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AN INTERPOLATING HARNACK INEQUALITY FOR

NONLINEAR HEAT EQUATION ON A SURFACE

Hongxin Guo and Chengzhe Zhu

Abstract. In this short note we prove new differential Harnack inequal-

ities interpolating those for the static surface and for the Ricci flow. In
particular, for 0 ≤ ε ≤ 1, α ≥ 0, β ≥ 0, γ ≤ 1 and u being a positive

solution to
∂u

∂t
= ∆u− αu log u+ εRu+ βuγ

on closed surfaces under the flow ∂
∂t
gij = −εRgij with R > 0, we prove

that

∂

∂t
log u− |∇ log u|2 + α log u− βuγ−1 +

1

t
= ∆ log u+ εR+

1

t
≥ 0.

1. Introduction and the main result

Geometric flow is one of central problems in geometric analysis. Curve
shortening flow in the plane is the simplest flow, and recently we established
interpolating inequalities in [8, 9]. Since there is no Riemannian curvature on
curves, the simplest intrinsic flow is on surfaces. Hamilton studied the Ricci
flow on surfaces in [10]. One of the useful tools to study geometric flows is
Li-Yau-Hamilton Harnack inequality. Chow proved an interpolating Harnack
estimate linking the Li-Yau estimate to the linear trace estimate in [3]. Wu
and Wu-Zheng generalized the interpolating Harnack estimates on surfaces to
nonlinear and constraint cases, see [11–13]. We have also studied Harnack
inequalities in various settings in [2, 5–7].

On the other hand, assuming that M is a static complete Riemannian mani-
fold Yang [14] proved gradient estimates for solutions to the following nonlinear
parabolic equation:

∂u

∂t
= ∆u+ au log u+ bu.(1.1)
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Very recently Wu [12] proved several new Harnack estimates, and one of them
is a new interpolating Harnack inequality for the equation

∂u

∂t
= ∆u− u log u+ εRu(1.2)

on closed surfaces under the ε−Ricci flow:

(1.3)
∂

∂t
gij = −2εRij = −εRgij .

Inspired by their work, in this note we consider

(1.4)
∂u

∂t
= ∆u− αu log u+ εRu+ βuγ

with 0 ≤ ε ≤ 1, α ≥ 0, β ≥ 0, γ ≤ 1 on closed surfaces under the flow (1.3).
We prove:

Theorem 1.1. Let (M2, g(t)) be a solution to the ε-Ricci flow (1.3) on a closed
surface with R > 0. Let u be a positive solution to the equation (1.4). Then
for all time t one has

(1.5)
∂

∂t
log u− |∇ log u|2 + α log u− βuγ−1 +

1

t
= ∆ log u+ εR+

1

t
≥ 0.

2. Proof of the main theorem

In this section, by routine calculations we prove Theorem 1.1.

Proof. We know in the ε-Ricci flow [4]

∂R

∂t
= ε(∆R+R2)

and
∂

∂t
(∆) = εR∆.

We can get
∂

∂t
logR− ε|∇ logR|2 = ε(∆ logR+R).

As in [4] we define Pij = ∇i∇j log u+ 1
2εRgij and P = gijPij = ∆ log u+ εR.

For η ≤ 0 we have

∆uη = Div(∇uη)

= Div(ηuη−1∇u)

= η(η − 1)uη−2|∇u|2 + ηuη−1∆u

= η(η − 1)uη|∇ log u|2 + ηuη(∆ log u+ |∇ log u|2)

= η2uη|∇ log u|2 + ηuη∆ log u

= η2uη|∇ log u|2 + ηuηP − ηuηεR
≥ ηuηP.
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It is easy to see that

∆|∇ log u|2 = 2∇∆ log u · ∇ log u+ 2 Rc(∇ log u,∇ log u) + 2|∇∇ log u|2

= 2∇P · ∇ log u− 2ε∇R · ∇ log u+ 2 Rc(∇ log u,∇ log u)

+ 2|∇∇ log u|2.

Since on surfaces Rc = 1
2Rg we have

∆|∇ log u|2 = 2∇P · ∇ log u+R|∇ log u− ε∇ logR|2 − ε2R|∇ logR|2

+ 2|∇∇ log u|2.

We know that

|Pij |2 = |∇∇ log u|2 + εR∆ log u+
1

2
ε2R2

and furthermore

|Pij |2 = |∇∇ log u|2 + εRP − 1

2
ε2R2.

Combining with the inequality 2|Pij |2 ≥ P 2 we get the following inequality

2|∇∇ log u|2 ≥ P 2 − 2εRP + ε2R2.

Then we arrive at

∆|∇ log u|2 ≥ 2∇P · ∇ log u+R|∇ log u− ε∇ logR|2 − ε2R|∇ logR|2

+ P 2 − 2εRP + ε2R2

≥ 2∇P · ∇ log u− ε2R|∇ logR|2 + P 2 − 2εRP + ε2R2.

We compute that

∂P

∂t
=

∂

∂t
(∆ log u) + ε

∂R

∂t

= (
∂

∂t
∆) log u+ ∆(

∂

∂t
log u) + εR

∂

∂t
logR

= εR∆ log u+ ∆(P + |∇ log u|2 − α log u+ βuγ−1) + εR
∂

∂t
logR

≥ εRP − ε2R2 + ∆P + 2∇P · ∇ log u− ε2R|∇ logR|2 + P 2 − 2εRP

+ ε2R2 − αP + αεR+ β(γ − 1)uγ−1P + εR
∂

∂t
logR

≥ ∆P + 2∇P · ∇ log u− (εR+ α+ β(1− γ)uγ−1)P + P 2

+ εR(
∂

∂t
logR− ε|∇ logR|2)

≥ ∆P + 2∇P · ∇ log u− (εR+ α+ β(1− γ)uγ−1)P + P 2

+ εR(ε(∆ logR+R)).
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Recall that the trace Harnack inequality for the ε-Ricci flow on closed surfaces
[4]

∂

∂t
logR− ε|∇ logR|2 = ε(∆ logR+R) ≥ −1

t
.

Hence

∂

∂t
(P +

1

t
) ≥ ∆(P +

1

t
) + 2∇(P +

1

t
) · ∇ log u

− (εR+ α+ β(1− γ)uγ−1)(P +
1

t
)

+ (P +
1

t
)(P − 1

t
) + εR(ε(∆ logR+R) +

1

t
).

It’s very clear to see that

P +
1

t
> 0

for very small positive t. Then applying the maximum principle, we conclude
that

P +
1

t
> 0

for all positive time t. �

In particular, when γ = 0 and ε = 1 we can extend the parameter α to all
real numbers, which has been proved in [1].

It is standard to get:

Corollary 2.1 (Comparing the solution at different points and times). For
any x1, x2 ∈M2, we pick a space-time path Γ(x, t) joining (x1, t1) and (x2, t2)
with 0 < t1 < t2. Along Γ we have

exp(αt1) log u(x1, t1) ≤ exp(αt2) log u(x2, t2) +

∫ t2

t1

exp(αt)

(
1

4

∣∣∣∣dΓ

dt

∣∣∣∣2 +
1

t

)
dt.

Proof. Indeed for such a path Γ, we have

d

dt
log u(x, t) =

∂

∂t
log u+∇ log u · dΓ

dt

≥ |∇ log u|2 − α log u+ βuγ−1 − 1

t
+∇ log u · dΓ

dt

≥ −1

4

∣∣∣∣dΓ

dt

∣∣∣∣2 − α log u+ βuγ−1 − 1

t

≥ −1

4

∣∣∣∣dΓ

dt

∣∣∣∣2 − α log u− 1

t
.

Hence,

d

dt
(exp(αt) log u(x, t)) ≥ − exp(αt)

(
1

4

∣∣∣∣dΓ

dt

∣∣∣∣2 +
1

t

)
.
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AN INTERPOLATING HARNACK INEQUALITY 5

Integrating this inequality from time t1 to t2 yields

exp(αt1) log u(x1, t1)− exp(αt2) log u(x2, t2)

≤
∫ t2

t1

exp(αt)

(
1

4

∣∣∣∣dΓ

dt

∣∣∣∣2 +
1

t

)
dt.
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