Bulletin of the
Korean Mathematical Society
BKMS

ISSN(Print) 1015-8634 ISSN(Online) 2234-3016

Article

HOME ALL ARTICLES View

Bull. Korean Math. Soc. 2024; 61(5): 1241-1252

Online first article September 20, 2024      Printed September 30, 2024

https://doi.org/10.4134/BKMS.b230474

Copyright © The Korean Mathematical Society.

$iw$-split modules

Xiaoying Wu

Chengdu University of Information Technology

Abstract

In this paper, the notions of $iw$-split modules and $iw$-split dimension are introduced, and some equivalent characterizations of these notions are given. With the help of $iw$-split modules and $iw$-split dimensions, new characterizations of DW rings, semi-simple rings, and Dedekind domains are given. More precisely, it is shown that $R$ is a DW ring if and only if every $iw$-split module is an injective module; while $R$ is a semi-simple ring if and only if every $R$-module is an $iw$-split module; and $R$ is a Dedekind domain if and only if every factor module of an $iw$-split module is $iw$-split.

Keywords: $w$-split module, $iw$-split module, $iw$-split dimension, Dedekind domain

MSC numbers: 13D05, 13D07, 13F05

Supported by: This work was supported by the Foundation of Chengdu University of Information Technology (KYTZ2022147).