Bull. Korean Math. Soc. 2022; 59(6): 1349-1357
Online first article November 14, 2022 Printed November 30, 2022
https://doi.org/10.4134/BKMS.b210425
Copyright © The Korean Mathematical Society.
Ali Benhissi, Abdelamir Dabbabi
Monastir University; Monastir University
Let ${\mathcal A}=(A_n)_{n\geq 0}$ be an increasing sequence of rings. We say that ${\mathcal I}=(I_n)_{n\geq 0}$ is an associated sequence of ideals of ${\mathcal A}$ if $I_0=A_0$ and for each $n\geq 1$, $I_n$ is an ideal of $A_n$ contained in $I_{n+1}$. We define the polynomial ring and the power series ring as follows: ${\mathcal I}[X]=\lbrace f={\sum_{i=0}^n}a_iX^i\in {\mathcal A}[X]: n\in \mathbb{N}, a_i\in I_i\rbrace$ and ${\mathcal I}[[X]]=\lbrace f={\sum_{i=0}^{+\infty}}a_iX^i\in {\mathcal A}[[X]]: a_i\in I_i\rbrace$. In this paper we study the Noetherian and the SFT properties of these rings and their consequences.
Keywords: Noetherian ring, SFT rings, power series ring, $I$-adic topology
MSC numbers: Primary 13B25, 13B35, 13E05
2024; 61(1): 273-280
2021; 58(5): 1221-1233
2020; 57(5): 1251-1258
2020; 57(5): 1165-1176
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd