Self-adjoint interpolation for operators in tridiagonal algebras
Bull. Korean Math. Soc. 2002 Vol. 39, No. 3, 423-430
Printed September 1, 2002
Joo Ho Kang and Young Soo Jo
Taegu University, Keimyung University
Abstract : Given operators $X$ and $Y$ acting on a Hilbert space $\Cal H$, an interpolating operator is a bounded operator $A$ such that $AX=Y$. An interpolating operator for $n$-operators satisfies the equation $AX_i=Y_i$ for $i=1,2,\cdots,n$. In this article, we obtained the following : Let $X = (x_{ij})$ and $Y =(y_{ij})$ be operators in ${\Cal B}({\Cal H})$ such that $x_{i \sigma(i)} \neq 0$ for all $i$. Then the following statements are equivalent. (1) There exists an operator $A$ in Alg$\Cal L$ such that $AX =Y$, every $E$ in $\Cal L$ reduces $A$ and $A$ is a self-adjoint operator. \vskip 0.2cm (2) $\displaystyle \sup \left\{ {{\| \sum_{i=1}^n E_i Y f_i\|} \over{\| \sum_{i=1}^n E_i X f_i\|}} : n \in {\Bbb N}, E_i \in {\Cal L} \text{~and~} f_i \in {\Cal H}\right\} < \infty$ \linebreak and ${\overline {x_{i,\sigma(i)}}} y_{i,\sigma(i)}$ is %%\vskip 0.2cm \noindent real for all $i=1,2,\cdots$.
Keywords : interpolation problem, self-adjoint interpolation, tridiagonal algebra, Alg $\Cal L$, CSL-algebra
MSC numbers : 47L35
Downloads: Full-text PDF  


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd