On derivations in noncommutative semiprime rings and Banach algebras
Bull. Korean Math. Soc. 2005 Vol. 42, No. 4, 671-678
Printed December 1, 2005
Kyoo-Hong Park
Seowon University
Abstract : Let $R$ be a noncommutative semiprime ring. Suppose that there exists a derivation $d: R \to R$ such that for all $x \in R$, either $[[d(x),x],d(x)]=0$ or $\langle\langle d(x),x \rangle, d(x) \rangle=0$. In this case $[d(x),x]$ is nilpotent for all $x \in R$. We also apply the above results to a Banach algebra theory.
Keywords : derivation, semiprime ring, Banach algebra
MSC numbers : 47B47
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd