Imaginary bicyclic function fields with the real cyclic subfield of class number one
Bull. Korean Math. Soc. 2008 Vol. 45, No. 2, 375-384
Printed June 1, 2008
Hwanyup Jung
Chonbuk National University
Abstract : Let $k = \mathbb F_{q}(T)$ and $\mathbb A = \mathbb F_{q}[T]$. Fix a prime divisor $\ell$ of $q-1$. In this paper, we consider a $\ell$-cyclic real function field $k(\sqrt[\ell]{P})$ as a subfield of the imaginary bicyclic function field $K = k(\sqrt[\ell]{P}, \sqrt[\ell]{-Q})$, which is a composite field of $k(\sqrt[\ell]{P})$ with a $\ell$-cyclic totally imaginary function field $k(\sqrt[\ell]{-Q})$ of class number one, and give various conditions for the class number of $k(\sqrt[\ell]{P})$ to be one by using invariants of the relatively cyclic unramified extensions $K/F_{i}$ over $\ell$-cyclic totally imaginary function field $F_{i} = k(\sqrt[\ell]{-P^{i}Q})$ for $1 \le i \le \ell - 1$.
Keywords : imaginary bicyclic function field, real cyclic function field, class number one
MSC numbers : 11R29, 11R58
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd