On the minimum length of some linear codes of dimension $6$
Bull. Korean Math. Soc. 2008 Vol. 45, No. 3, 419-425
Printed September 1, 2008
Eun Ju Cheon and Takao Kato
Gyeongsang National University, Yamaguchi University
Abstract : For $q^5-q^3-q^2-q+1\le d \le q^5-q^3-q^2$, we prove the non-existence of a $[g_q(6,d),6,d]_q$ code and we give a $[g_q(6,d) +1, 6, d]_q$ code by constructing appropriate 0-cycle in the projective space, where $g_q(k,d)=\sum_{i=0}^{k-1}{\lceil{\frac{d}{q^i}}\rceil}$. Consequently, we have the minimum length $n_q(6,d)=g_q(6,d) +1$ for $q^5-q^3-q^2-q+1 \le d \le q^5 -q^3 -q^2$ and $q \ge 3$.
Keywords : Griesmer bound, linear code, $0$-cycle, minimum length, projective space
MSC numbers : 94B65, 94B05, 51E20, 05B25
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd