On the stability of a generalized cubic functional equation
Bull. Korean Math. Soc. 2008 Vol. 45, No. 4, 739-748
Printed December 1, 2008
Heejeong Koh and DongSeung Kang
Dankook University
Abstract : In this paper, we obtain the general solution of a generalized cubic functional equation, the Hyers-Ulam-Rassias stability, and the stability by using the alternative fixed point for a generalized cubic functional equation \begin{equation*}\begin{aligned} &\ 4f(\sum^{n-1}_{j=1}x_j + mx_n) + 4f(\sum^{n-1}_{j=1}x_j-mx_n) +m^2\sum^{n-1}_{j=1}f(2x_j)\\ =&\ 8f(\sum^{n-1}_{j=1}x_j)+4m^2\sum^{n-1}_{j=1}\Big(f(x_j+ x_n) + f(x_j -x_n)\Big) \end{aligned}\end{equation*} for a positive integer $m \geq 1.$
Keywords : Hyers-Ulam-Rassias stability, cubic mapping
MSC numbers : 39B52
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd