Bulletin of the
Korean Mathematical Society
BKMS

ISSN(Print) 1015-8634 ISSN(Online) 2234-3016

Ahead of Print Articles

HOME VIEW ARTICLES View

Bull. Korean Math. Soc.

Online first article March 13, 2025

Copyright © The Korean Mathematical Society.

Pure projective and pure injective modules over polynomial rings

Lixin Mao

Nanjing Institute of Technology

Abstract

We study the purity of modules over polynomial rings. It is proven that (1) $X$ is a pure projective left $R$-module if and only if $\textbf{T}(X)$ is a pure projective left $R[x]$-module if and only if $\textbf{Z}(X)$ is a pure projective left $R[x]$-module; (2) $f: A\rightarrow N$ is a pure projective precover (resp. pure projective cover) in $R$-Mod if and only if $\textbf{Z}(f): \textbf{Z}(A)\rightarrow \textbf{Z}(N)$ is a pure projective precover (resp. pure projective cover) in $R[x]$-Mod. Also, we obtain dual results about pure injective modules.

Keywords: Polynomial ring; pure projective module; pure injective module.

MSC numbers: 16D40; 16D50; 18G25.

Share this article on :