On $\pi\mathfrak{F}$-embedded subgroups of finite groups
Bull. Korean Math. Soc. 2016 Vol. 53, No. 1, 91-102
https://doi.org/10.4134/BKMS.2016.53.1.91
Printed January 31, 2016
Wenbin Guo, Haifeng Yu, and Li Zhang
University of Science and Technology of China, Hefei University, University of Science and Technology of China
Abstract : A chief factor $H/K$ of $G$ is called $\mathfrak{F}$-central in $G$ provided $(H/K)\rtimes (G/C_{G}(H/K))\in\mathfrak{F}$. A normal subgroup $N$ of $G$ is said to be $\pi\mathfrak{F}$-hypercentral in $G$ if either $N=1$ or $N\neq1$ and every chief factor of $G$ below $N$ of order divisible by at least one prime in $\pi$ is $\mathfrak{F}$-central in $G$. The symbol $Z_{\pi\mathfrak{F}}(G)$ denotes the $\pi\mathfrak{F}$-hypercentre of $G$, that is, the product of all the normal $\pi\mathfrak{F}$-hypercentral subgroups of $G$. We say that a subgroup $H$ of $G$ is $\pi\mathfrak{F}$-embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is $s$-quasinormal in $G$ and $(H\cap T)H_G/H_G\leq Z_{\pi\mathfrak{F}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of $G$ contained in $H$. In this paper, we use the $\pi\mathfrak{F}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of $p$-nilpotency and supersolvability of a group.
Keywords : $\pi\mathfrak{F}$-hypercenter, $\pi\mathfrak{F}$-embedded subgroup, Sylow subgroup, $n$-maximal subgroup
MSC numbers : 20D10, 20D15, 20D20
Downloads: Full-text PDF  


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd