On the Diophantine equation $(an)^{x}+(bn)^{y}=(cn)^{z}$
Bull. Korean Math. Soc. 2015 Vol. 52, No. 4, 1133-1138
Printed July 31, 2015
Mi-Mi Ma and Jian-Dong Wu
Nanjing Normal University, Nanjing Normal University
Abstract : In 1956, Je\'{s}manowicz conjectured that, for any positive integer $n$ and any primitive Pythagorean triple $(a,b,c)$ with $a^2+b^2=c^2$, the equation $(an)^x+(bn)^y=(cn)^z$ has the unique solution $(x,y,z)=(2,2,2)$. In this paper, under some conditions, we prove the conjecture for the primitive Pythagorean triples $(a,b,c)=(4k^{2}-1,4k,4k^{2}+1)$.
Keywords : Je\'{s}manowicz' conjecture, Diophantine equation, Pythagorean triple
MSC numbers : 11D61
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd