Bulletin of the
Korean Mathematical Society
BKMS

ISSN(Print) 1015-8634 ISSN(Online) 2234-3016

Article

HOME ALL ARTICLES View

Bull. Korean Math. Soc. 2010; 47(2): 385-399

Printed March 1, 2010

https://doi.org/10.4134/BKMS.2010.47.2.385

Copyright © The Korean Mathematical Society.

On quasi-rigid ideals and rings

Chan Yong Hong, Nam Kyun Kim, and Tai Keun Kwak

Kyung Hee University, Hanbat National University, and Daejin University

Abstract

Let $\sigma$ be an endomorphism and $I$ a $\sigma$-ideal of a ring $R$. Pearson and Stephenson called $I$ a $\sigma$-semiprime ideal if whenever $A$ is an ideal of $R$ and $m$ is an integer such that $A\sigma^t(A) \subseteq I$ for all $t\geq m$, then $A \subseteq I$, where $\sigma$ is an automorphism, and Hong et al. called $I$ a $\sigma$-rigid ideal if $a\sigma(a)\in I$ implies $a\in I$ for $a\in R$. Notice that $R$ is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of $R$ is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring $R$ and one of the Ore extension $R[x;\sigma,\delta]$ of $R$ are also investigated. In particular, $R$ is a (principally) quasi-Baer ring if and only if $R[x;\sigma,\delta]$ is a (principally) quasi-Baer ring, when $R$ is a quasi $\sigma$-rigid ring.

Keywords: endomorphism, rigidness, semiprimeness, Ore extension, (principally) quasi-Baer ring

MSC numbers: 16N60, 16S36, 16W60