Independently generated modules
Bull. Korean Math. Soc. 2009 Vol. 46, No. 5, 867-871
https://doi.org/10.4134/BKMS.2009.46.5.867
Printed September 1, 2009
Muhammet Tamer Ko\c{s}an and Tufan \"{O}zdin
Gebze Institute of Technology and Faculty of Science and Literature Erzincan University
Abstract : A module $M$ over a ring $R$ is said to satisfy $(P)$ if every generating set of $M$ contains an independent generating set. The following results are proved; $(1)$ Let $\tau=(\mathbb{T}_{\tau},\mathbb{F}_{\tau})$ be a hereditary torsion theory such that $\mathbb{T}_{\tau} \neq$ {\rm Mod}-$R$. Then every $\tau $-torsionfree $R$-module satisfies $(P)$ if and only if $S=R/\tau (R)$ is a division ring. $(2)$ Let $\mathcal K$ be a hereditary pre-torsion class of modules. Then every module in $\mathcal K$ satisfies $(P)$ if and only if either ${\mathcal K}=\{0\}$ or $S=R/{\rm Soc}_{\mathcal K}(R)$ is a division ring, where ${\rm Soc}_{\mathcal K}(R)=\cap \{I \leq R_R: R/I\in {\mathcal K}\}$.
Keywords : generated set for modules, basis, (non)-singular modules, division ring, torsion theory
MSC numbers : 16D10
Downloads: Full-text PDF  


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd