Abstract : A normalized analytic function $f$ is parabolic starlike if $w(z)$ $:=zf'(z)/f(z)$ maps the unit disk into the parabolic region $\{w: \operatorname{Re} w>|w-1|\}$. Sharp estimates on the third Hermitian-Toeplitz determinant are obtained for parabolic starlike functions. In addition, upper bounds on the third Hankel determinants are also determined.
Abstract : Let $n\geqslant 2$ be an integer, we denote the smallest integer $b$ such that $\gcd\qty{\binom nk: b<k<n-b}>1$ as $b(n)$. For any prime $p$, we denote the highest exponent $\alpha$ such that $p^\alpha\mid n$ as $v_p(n)$. In this paper, we partially answer a question asked by Hong in 2016. For a composite number $n$ and a prime number $p$ with $p\mid n$, let $n=a_mp^m+r$, $0\leqslant r<p^m$, $0<a_m<p$. Then we have\\ \resizebox{\linewidth}{4.5mm}{ $\displaystyle v_p\qty(\gcd\qty{\binom nk: b(n)<k<n-b(n),\ (n,k)>1})= \begin{cases} 1,&a_m=1\text{ and }r=b(n), \\ 0,&\text{otherwise}. \end{cases} $}
Abstract : In this paper, we introduce the notion of {\it semi-symmetric structure Jacobi operator } for Hopf real hypersufaces in the complex quad\-ric $Q^m = SO_{m+2}/SO_mSO_2$. Next we prove that there does not exist any Hopf real hypersurface in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$ with semi-symmetric structure Jacobi operator. As a corollary, we also get a non-existence property of Hopf real hypersurfaces in the complex quadric $Q^m$ with either symmetric (parallel), or recurrent structure Jacobi operator.
Abstract : Let $U$ be the restricted quantized enveloping algebra $\widetilde{U}_q(\mathfrak{sl}_2)$ over an algebraically closed field of characteristic zero, where $q$ is a primitive $l$-th root of unity (with $l$ being odd and greater than $1$). In this paper we show that any indecomposable submodule of $U$ under the adjoint action is generated by finitely many special elements. Using this result we describe all ideals of $U$. Moreover, we classify annihilator ideals of simple modules of $U$ by generators.
Abstract : In this paper, we study products of composition, multiplication and differentiation acting on the fractional Cauchy spaces and mapping into the Zygmund space. Characterizations are provided for boundedness and compactness of these operators.
Abstract : Let $L(s,\chi)$ be the Dirichlet $L$-series associated with an $f$-periodic complex function $\chi$. Let $P(X)\in {\mathbb C}[X]$. We give an expression for $\sum_{n=1}^f \chi (n)P(n)$ as a linear combination of the $L(-n,\chi)$'s for $0\leq n<\deg P(X)$. We deduce some consequences pertaining to the Chowla hypothesis implying that $L(s,\chi )>0$ for $s>0$ for real Dirichlet characters $\chi$. To date no extended numerical computation on this hypothesis is available. In fact by a result of R. C. Baker and H. L. Montgomery we know that it does not hold for almost all fundamental discriminants. Our present numerical computation shows that surprisingly it holds true for at least $65\%$ of the real, even and primitive Dirichlet characters of conductors less than $10^6$. We also show that a generalized Chowla hypothesis holds true for at least $72\%$ of the real, even and primitive Dirichlet characters of conductors less than $10^6$. Since checking this generalized Chowla's hypothesis is easy to program and relies only on exact computation with rational integers, we do think that it should be part of any numerical computation verifying that $L(s,\chi )>0$ for $s>0$ for real Dirichlet characters $\chi$. To date, this verification for real, even and primitive Dirichlet characters has been done only for conductors less than $2\cdot 10^5$.
Abstract : Let $F_n$ be the Farey sequence of order $n$. For $S\subseteq F_n$, let $\mathcal{Q}(S)$ be the set of rational numbers $x/y$ with $x,y\in S,~x\leq y$ and $y\neq 0$. Recently, Wang found all subsets $S$ of $F_n$ with $|S|=n+1$ for which $\mathcal{Q}(S)\subseteq F_n$. Motivated by this work, we try to determine the structure of $S\subseteq F_n$ such that $|S|=n$ and $\mathcal{Q}(S)\subseteq F_n$. In this paper, we determine all sets $S\subseteq F_n$ satisfying these conditions for $n\in\{p,2p\}$, where $p$ is prime.
Abstract : Recently, Alzer and Choi [2] introduced and studied a set of the four linear Euler sums with parameters. These sums are parametric extensions of Flajolet and Salvy's four kinds of linear Euler sums [9]. In this paper, by using the method of residue computations, we will establish two explicit combined formulas involving two parametric linear Euler sums $S_{p,q}^{++}(a,b)$ and $S_{p,q}^{+-}(a,b)$ defined by Alzer and Choi, which can be expressed in terms of a linear combinations of products of trigonometric functions, digamma functions and Hurwitz zeta functions.
Abstract : In this paper, we introduce the concept of $\omega$-expansive of random map on compact metric spaces $\mathcal{P}$. Also we introduce the definitions of positively, negatively shadowing property and shadowing property for two-sided RDS. Then we show that if $\varphi$ is $\omega$-expansive and has the shadowing property for $\omega$, then $\varphi$ is topologically stable for $\omega$.
Abstract : In this paper, we give some results on 2-strongly Gorenstein projective modules and related rings. We first investigate the relationship between strongly Gorenstein projective modules and periodic modules and then give the structure of modules over strongly Gorenstein semisimple rings. Furthermore, we prove that a ring $R$ is 2-strongly Gorenstein hereditary if and only if every ideal of $R$ is Gorenstein projective and the class of 2-strongly Gorenstein projective modules is closed under extensions. Finally, we study the relationship between 2-Gorenstein projective hereditary and 2-Gorenstein projective semisimple rings, and we also give an example to show the quotient ring of a 2-Gorenstein projective hereditary ring is not necessarily 2-Gorenstein projective semisimple.
Imsoon Jeong, Gyu Jong Kim, Changhwa Woo
Bull. Korean Math. Soc. 2023; 60(4): 849-861
https://doi.org/10.4134/BKMS.b220152
Sunben Chiu, Pingzhi Yuan, Tao Zhou
Bull. Korean Math. Soc. 2023; 60(4): 863-872
https://doi.org/10.4134/BKMS.b220166
Rosihan M. Ali, Sushil Kumar, Vaithiyanathan Ravichandran
Bull. Korean Math. Soc. 2023; 60(2): 281-291
https://doi.org/10.4134/BKMS.b210368
Rita Hibschweiler
Bull. Korean Math. Soc. 2023; 60(4): 1061-1070
https://doi.org/10.4134/BKMS.b220471
Rosihan M. Ali, Sushil Kumar, Vaithiyanathan Ravichandran
Bull. Korean Math. Soc. 2023; 60(2): 281-291
https://doi.org/10.4134/BKMS.b210368
Sunben Chiu, Pingzhi Yuan, Tao Zhou
Bull. Korean Math. Soc. 2023; 60(4): 863-872
https://doi.org/10.4134/BKMS.b220166
Imsoon Jeong, Gyu Jong Kim, Changhwa Woo
Bull. Korean Math. Soc. 2023; 60(4): 849-861
https://doi.org/10.4134/BKMS.b220152
Yu Wang
Bull. Korean Math. Soc. 2023; 60(4): 1025-1034
https://doi.org/10.4134/BKMS.b220460
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd