Abstract : It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right $R$-module is nilpotent-invariant. We prove that $R\cong R_1\times R_2$, where $R_1, R_2$ are rings which satisfy $R_1$ is a semi-simple Artinian ring and $R_2$ is square-free as a right $R_2$-module and all idempotents of $R_2$ is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right $R$-modules. Such a module is shown to have isomorphic simple modules $eR$ and $fR$, where $e,f$ are orthogonal primitive idempotents such that $eRf\ne 0$.
Abstract : In this paper, we study the complex symmetric weighted composition-differentiation operator $D_{\psi,\phi}$ with respect to the conjugation $ JW_{\xi, \tau}$ on the Hardy space $H^2$. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of $D_{\psi,\phi}$ is also investigated.
Abstract : If a multiplicative function $f$ is commutable with a quadratic form $x^2+xy+y^2$, i.e., \[ f(x^2+xy+y^2) = f(x)^2 + f(x)\,f(y) + f(y)^2, \] then $f$ is the identity function. In other hand, if $f$ is commutable with a quadratic form $x^2-xy+y^2$, then $f$ is one of three kinds of functions: the identity function, the constant function, and an indicator function for $\mathbb{N}\setminus p\mathbb{N}$ with a prime $p$.$\\ \\ \\$
Abstract : Let $L(s,\chi)$ be the Dirichlet $L$-series associated with an $f$-periodic complex function $\chi$. Let $P(X)\in {\mathbb C}[X]$. We give an expression for $\sum_{n=1}^f \chi (n)P(n)$ as a linear combination of the $L(-n,\chi)$'s for $0\leq n<\deg P(X)$. We deduce some consequences pertaining to the Chowla hypothesis implying that $L(s,\chi )>0$ for $s>0$ for real Dirichlet characters $\chi$. To date no extended numerical computation on this hypothesis is available. In fact by a result of R. C. Baker and H. L. Montgomery we know that it does not hold for almost all fundamental discriminants. Our present numerical computation shows that surprisingly it holds true for at least $65\%$ of the real, even and primitive Dirichlet characters of conductors less than $10^6$. We also show that a generalized Chowla hypothesis holds true for at least $72\%$ of the real, even and primitive Dirichlet characters of conductors less than $10^6$. Since checking this generalized Chowla's hypothesis is easy to program and relies only on exact computation with rational integers, we do think that it should be part of any numerical computation verifying that $L(s,\chi )>0$ for $s>0$ for real Dirichlet characters $\chi$. To date, this verification for real, even and primitive Dirichlet characters has been done only for conductors less than $2\cdot 10^5$.
Abstract : In this paper, we introduce the concept of $\omega$-expansive of random map on compact metric spaces $\mathcal{P}$. Also we introduce the definitions of positively, negatively shadowing property and shadowing property for two-sided RDS. Then we show that if $\varphi$ is $\omega$-expansive and has the shadowing property for $\omega$, then $\varphi$ is topologically stable for $\omega$.
Abstract : With the notion of prime submodule defined by F. Raggi et al. we prove that the intersection of all prime submodules of a Goldie module $M$ is a nilpotent submodule provided that $M$ is retractable and $M^{(\Lambda)}$-projective for every index set $\Lambda$. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent.
Abstract : The goal of this article is to introduce the concept of pseudo-weighted Browder spectrum when the underlying Hilbert space is not necessarily separable. To attain this goal, the notion of $\alpha$-pseudo-Browder operator has been introduced. The properties and the relation of the weighted spectrum, pseudo-weighted spectrum, weighted Browder spectrum, and pseudo-weighted Browder spectrum have been investigated by extending analogous properties of their corresponding essential pseudo-spectrum and essential pseudo-weighted spectrum. The weighted spectrum, pseudo-weighted spectrum, weighted Browder, and pseudo-weighted Browder spectrum of the sum of two bounded linear operators have been characterized in the case when the Hilbert space (not necessarily separable) is a direct sum of its closed invariant subspaces. This exploration ends with a characterization of the pseudo-weighted Browder spectrum of the sum of two bounded linear operators defined over the arbitrary Hilbert spaces under certain conditions.
Abstract : The goal of this paper is to analyze the generalized $m$-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized $m$-quasi-Einstein structure $(g,f,m,\lambda)$ is locally isometric to a hyperbolic space $\mathbb{H}^{2n+1}(-1)$ or a warped product $\widetilde{M}\times_\gamma\mathbb{R}$ under certain conditions. Next, we proved that a $(\kappa,\mu)'$-almost Kenmotsu manifold with $h'\neq0$ admitting a closed generalized $m$-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized $m$-quasi-Einstein metric $(g,f,m,\lambda)$ in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space $\mathbb{H}^3(-1)$ or the Riemannian product $\mathbb{H}^2(-4)\times\mathbb{R}$.
Abstract : In this paper we study a nudging continuous data assimilation algorithm for the three-dimensional Leray-$\alpha$ model, where measurement errors are represented by stochastic noise. First, we show that the stochastic data assimilation equations are well-posed. Then we provide explicit conditions on the observation density (resolution) and the relaxation (nudging) parameter which guarantee explicit asymptotic bounds, as the time tends to infinity, on the error between the approximate solution and the actual solution which is corresponding to these measurements, in terms of the variance of the noise in the measurements.
Abstract : A ring $R$ is called a UN ring if every non unit of it can be written as product of a unit and a nilpotent element. We obtain results about lifting of conjugate idempotents and unit regular elements modulo an ideal $I$ of a UN ring $R$. Matrix rings over UN rings are discussed and it is obtained that for a commutative ring $R$, a matrix ring $M_n(R)$ is UN if and only if $R$ is UN. Lastly, UN group rings are investigated and we obtain the conditions on a group $G$ and a field $K$ for the group algebra $KG$ to be UN. Then we extend the results obtained for $KG$ to the group ring $RG$ over a ring $R$ (which may not necessarily be a field).
Yuxia Liang, Zhi-Yuan Xu, Ze-Hua Zhou
Bull. Korean Math. Soc. 2023; 60(2): 293-305
https://doi.org/10.4134/BKMS.b210802
Donghyun Kim, Junhui Woo, Ji-Hun Yoon
Bull. Korean Math. Soc. 2023; 60(2): 361-388
https://doi.org/10.4134/BKMS.b220134
Shahram Rezaei, Behrouz Sadeghi
Bull. Korean Math. Soc. 2023; 60(1): 149-160
https://doi.org/10.4134/BKMS.b220003
Jun Ho Lee
Bull. Korean Math. Soc. 2023; 60(2): 315-323
https://doi.org/10.4134/BKMS.b220094
Rita Hibschweiler
Bull. Korean Math. Soc. 2023; 60(4): 1061-1070
https://doi.org/10.4134/BKMS.b220471
St\'ephane R. Louboutin
Bull. Korean Math. Soc. 2023; 60(1): 1-22
https://doi.org/10.4134/BKMS.b210464
Xing-Wang Jiang, Ya-Li Li
Bull. Korean Math. Soc. 2023; 60(4): 915-931
https://doi.org/10.4134/BKMS.b220396
Weiguo Lu, Ce Xu, Jianing Zhou
Bull. Korean Math. Soc. 2023; 60(4): 985-1001
https://doi.org/10.4134/BKMS.b220447
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd