DOMINATION PRESERVING LINEAR OPERATORS OVER SEMIRINGS

Gwang-Yeon Lee and Hang-Kyun Shin

Suppose \mathcal{K} is a field and \mathcal{M} is the set of all $m \times n$ matrices over \mathfrak{K}. If T is a linear operator on \mathcal{M} and f is a function defined on \mathcal{M}, then T preserves f if $f(T(A))=f(A)$ for all $A \in \mathcal{M}$.

Let \mathcal{M} be the set of all $m \times n$ matrices over a semiring \mathcal{S}. In 1991, Beasley and Pullman characterized the linear operator on \mathcal{M} that preserve the term rank. In particular, they obtained the following theorem about a term rank preserver over a semiring.

Theorem. A. [2]. If \mathcal{S} is any semiring, then the followings are equivalent for any linear operator T on $\mathcal{M}=\mathcal{M}_{m, n}(\mathcal{S})$
(i) T is a (P, Q, B) operator.
(ii) T preserves term rank.
(iii) T preserves term rank 1 and term rank 2.
(iv) T strongly preserves term rank 1.
(v) T is nonsingular and preserves term rank 1 (when \mathcal{S} is a field).

The above theorem is very useful for characterization of various linear preservers on $\mathcal{M}_{m, n}(\mathcal{S})$. In fact, Beasley and Pullman [1] obtained the characterization of permanent preserver and rook-polynomial preserver by using (P, Q, B)-operator. Also, Beasley, G. Y. Lee and S. G. Lee $[3,4]$ characterized the linear operators on the real matrices which preserve the value of an assignment function of each matrix by using a term rank preserver.

In this paper, we prove that T is a nonsigular domination preserver and $T\left(A^{t}\right)=T(A)^{t}$ for $A \in \mathcal{M}_{2,2}(\mathcal{S})$ if and only if T is a term rank

[^0]preserver on $\mathcal{M}_{m, n}(\mathcal{S})$. Then, we shall have some useful tools that characterize linear preserving operators on $\mathcal{M}_{m, n}(\mathcal{S})$.

We start with some definitions. A semiring is a binary system $(\mathcal{S},+, \times)$ such that $(\mathcal{S},+)$ is an abelian monoid (identity 0$),(\mathcal{S}, \times)$ is a monoid (identity 1), \times distributes over,$+ 0 \times s=s \times 0=0$ for all s in \mathcal{S}, and $1 \neq 0$. Usually \mathcal{S} denotes the system and \times is denoted by juxtaposition.

Here are some examples of semirings which occur in combinatorics. Let \mathbb{B} be any Boolean algebra, then (\mathbb{B}, \cup, \cap) is a semiring. Let \mathbb{F} be the real interval $[0,1]$, then (\mathbb{F}, \max , \min) is a semiring. If \mathbb{P} is any subring of \mathbb{R}, the reals, and \mathbb{P}^{+}denotes the non-negative members of \mathbb{P}, then \mathbb{P}^{+}is a semiring.

Algebraic terms such as unit and zero divisor are defined for semirings as they are for rings.

The linearity of operators is defined as for vector space over fields.
Let $\mathcal{M}_{m, n}(\mathcal{S})$ denote the set of all $m \times n$ matrices over \mathcal{S}. The $m \times n$ matrix of $1^{\prime} s$ is denoted $J_{m, n}$. Let $E_{i j}$ denote the (0,1)-matrix whose only nonzero entry is in the (i, j) position. A cell is a multiple of $E_{i j}$ for some (i, j), so that the set of cells is the set

$$
\left\{\alpha_{i j} E_{i j}: \alpha_{i j} \in \mathcal{S}, 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

A linear operators over \mathcal{S} is completely determined by its behavior on the set of cells in $\mathcal{M}_{m, n}(\mathcal{S})$.

From now on we will assume that $2 \leq m \leq n$ unless specified otherwise, and let $\mathcal{M}=\mathcal{M}_{m, n}(\mathcal{S})$ a fixed semiring \mathcal{S}.

The pattern, \bar{A}, of a matrix A in \mathcal{M} is the (0,1)-matrix whose (i, j) th entry is 0 if and only if $a_{i j}=0$. We will also assume that \bar{A} is in $\mathcal{M}_{m, n}(\mathbb{B})$, where \mathbb{B} denotes the Boolean algebra of two elements $(\{0,1\},+, \times)$ where + is \cup and \times is \cap.

If A and B are in \mathcal{M}, we say that B dominates A (written $B \geq A$ or $A \leq B)$ if $b_{i j}=0$ implies $a_{i j}=0$ for all i, j. We write $B>A$ if $B \geq A$ and $A \nsubseteq B$ where $A \not \equiv B$ if and only if $\bar{A} \neq \bar{B}$. Note that $A \leq B$ iff $\bar{A} \leq \bar{B}$, and that $\overline{A+B} \leq \bar{A}+\bar{B}$ for all A and B.

If T is a linear operator on \mathcal{M}, let \bar{T}, its pattern, be the linear operator on $\mathcal{M}_{m, n}(\mathbb{B})$ denoted by $\bar{T}\left(\overline{\alpha_{i j} E_{i j}}\right)=\overline{T\left(\alpha_{i j} E_{i j}\right)}$ for all (i, j). Then $\overline{T(A)} \leq \bar{T}(\bar{A})$ for all $A \in \mathcal{M}$.

An important concept in the combinatorial theory of matrices is that of the term rank of a matrix. The term rank of $A, t(A)$, is the minimum number of lines (rows or columns) which contain all the non-zero entries of A. Evidently the term rank of a matrix is the term rank of its pattern, i.e.,

$$
t(A)=t(\bar{A}) .
$$

If P and Q are $m \times m$ and $n \times n$ permutation matrices, resp., B is an $m \times n$ matrix in \mathcal{M} over \mathcal{S} none of whose entries is a zero divisor or zero, then T is a (P, Q, B)-operator if
(i) $T(X)=P(X \circ B) Q$ for all X in \mathcal{M} or
(ii) $m=n$ and $T(X)=P\left(X^{t} \circ B\right) Q$ for all $X \in \mathcal{M}$.

Let T be a linear operator on \mathcal{M} such that if $A \leq B$ then $T(A) \leq$ $T(B)$. We call T a domination preserving operator on \mathcal{M}. From now on we will assume that T is a domination preserving linear operator on \mathcal{M}.

Remark. Let \mathcal{M} be the set of 2×2 matrices with entries from \mathbb{B}, the boolean algebra of two elements. Consider the following linear operator $T: \mathcal{M} \rightarrow \mathcal{M}$, where T is given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad \text { whenever } a, b, c, d \in \mathbb{B} .
$$

Then T is a domination preserving operator since if

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \leq\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]
$$

then

$$
T\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \leq T\left(\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],
$$

i.e., $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \leq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Since T sends $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ to the zero matrix, T is not nonsingular. For example, let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

Then, we know neither $A \leq B$ nor $B \leq A$. But $T(A) \leq T(B)$. So, if T is singular then T is not much of interest. Therefore, we will assume that domination preserving linear operator T is nonsingular, from now on.

The number of nonzero entries of a matrix A is denoted by $|A|$.
Lemma 1. The linear operator T is bijective on the set of cells.
Proof. Since T is nonsingular, $|T(X)| \geq 1$ for all nonzero matrix X in M. Let $C_{1}, C_{2}, \cdots, C_{m n}$ are cells. Suppose that $|T(C)| \geq 2$ for some cell C. Without loss of generality, let $C=C_{1}$ and $\left|T\left(C_{1}\right)\right| \geq 2$. Let $M_{1}=\bar{C}_{1}$. Then $\left|T\left(M_{1}\right)\right| \geq 2$. Let

$$
M_{j}= \begin{cases}M_{j-1}, & \text { if } T\left(\bar{C}_{j}\right) \leq T\left(M_{j-1}\right) \\ M_{j-1}+\bar{C}_{j}, & \text { if } T\left(\bar{C}_{j}\right) \not \leq T\left(M_{j-1}\right)\end{cases}
$$

for $j=2,3, \ldots, m n$. Then $\left|M_{j}\right| \leq\left|M_{j-1}\right|+1$ for all $2 \leq j \leq m n$. If equality hold for every $2 \leq j \leq m n$, then $\left|T\left(M_{j}\right)\right| \geq j+1$ since $C_{j} \not \leq M_{j-1}$ and $\left|T\left(M_{1}\right)\right| \geq 2$. In particular, $\left|T\left(M_{m n}\right)\right| \geq m n+1$, which is impossible. Thus $\left|M_{m n}\right| \leq m n-1$ and there exists j such that $M_{j}=M_{j-1}$ and $T\left(\bar{C}_{j}\right) \leq T\left(M_{j-1}\right)$. Then, for the j,

$$
T(J)=T\left(J \backslash \bar{C}_{j}\right)
$$

Since T is nonsingular and $J>J \backslash \bar{C}_{j}$, this is a contradiction. Therefore, $T(C)$ is a cell.

Now, let $i \neq j$, i.e., $C_{i} \neq C_{j}$. Suppose that $T\left(C_{i}\right)=T\left(C_{j}\right)$. Then, $\overline{T\left(C_{i}\right)+T\left(C_{j}\right)}$ is either $\overline{T\left(C_{i}\right)}$ or $\overline{T\left(C_{j}\right)}$ and

$$
\begin{aligned}
\overline{T(J)} & =\overline{T\left[J \backslash\left(C_{i}+C_{j}\right)+C_{i}+C_{j}\right]} \\
& =\overline{T\left[J \backslash\left(C_{i}+C_{j}\right)\right]+T\left(C_{i}\right)+T\left(C_{j}\right)} \\
& =\overline{T\left[J \backslash\left(C_{i}+C_{j}\right)\right]+T\left(C_{i}\right)} \\
& =\overline{T\left(J \backslash C_{j}\right)} .
\end{aligned}
$$

But $J>J \backslash C_{j}$. Therefore, $T\left(C_{i}\right) \neq T\left(C_{j}\right)$ by nonsingularity of T.
The following lemma 2 gives some domination properties for permutation and transposition.

Lemma 2. For $A, B \in \mathcal{M}$, if $A \leq B$ then
(i) $P A Q \leq P B Q$ for any $m \times m, n \times n$ permutation matrices P and Q, respectively.
(ii) $A^{t} \leq B^{t}$.

Proof. The proof is straight forward.
Remark. Let $A \leq B$ for $A, B \in \mathcal{M}$. Then, we can possibly choose a matrix X in \mathcal{M} such that $A+X \not \leq B+X$. For example, let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } X=\left[\begin{array}{ll}
0 & -1 \\
0 & -1
\end{array}\right] .
$$

Then $A \leq B$ and $A+X \geq B+X$. Thus, if T is a domination preserving operator, then $T(A)$ does not have a form $X+Y, X, Y \in \mathcal{M}$, in general.

We note that the domination can be varied with multiplication of (invertible) matrices, in general. That is, $U A \geq U B$ for $A \leq B$. For example, let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$

Then $A \leq B$. We can choose an (invertible) matrix $U=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$. Then

$$
U A=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right] \geq\left[\begin{array}{ll}
1 & 5 \\
2 & 0
\end{array}\right]=U B
$$

Therefore, the domination preserving operator T does not have a form $T(A)=X+Y$ and $T(A)=U A V$ for some matrices X, Y, U, V, in general.

Lemma 3. For $A \in \mathcal{M}$, there exist $m \times m, \quad n \times n$ permutation matrices U, V, respectively, such that

$$
T(P A Q)=U T(A) V
$$

for some $m \times m, \quad n \times n$ permutation matrices P and Q, resp..
Proof. Since T is bijective on the set of cells, there exists a bijective $\operatorname{map} f$ on indices set. Let $T\left(E_{i j}\right)=E_{r s}$. Then $T\left(P E_{i j} Q\right)=T\left(E_{\sigma(i) \tau(j)}\right)$

Gwang-Yeon Lee and Hang-Kyun Shin

where σ, τ are permutations with respect to P and Q, respectively. Since f is bijective on indices set,

$$
f(\sigma(i), \tau(j))=(\delta \sigma(i), \rho \tau(j))
$$

for some permutations δ, ρ. Therefore, there exist $m \times m, n \times n$ permutation matrices U, V, resp., such that $T(P A Q)=U T(A) V$.

A matrix M in \mathcal{M} is a monomial if the pattern of M is a column permutation of $\left[I_{m} \vdots 0_{m, n-m}\right.$] where I_{m} is the $m \times m$ identity matrix and $\mathbf{0}_{m, n-m}$ is the $m \times(n-m)$ zero matrix. In particular, if $m=n$ then \bar{M} is a permutation matrix. If $L \leq M$ and M is a monomial, then we call L a submonomial matrix.

Lemma 4. Let $T\left(A^{t}\right)=T(A)^{t}$ for $A \in \mathcal{M}_{2,2}(\mathcal{S})$. There exists a monomial matrix $M \in \mathcal{M}$ such that $T(M)$ is a monomial.

Proof. Let A be a monomial matrix with $t(T(A))=k$. If $k=m$, then the proof is completed.

Suppose that $k<m$. Then, there exists a submonomial matrix B such that $B \leq A$ and $t(B)=t(T(B))=k$. Since B is a submonomial with $t(B)=k$ and $t(T(B))=k, T(B)$ is a submonomial matrix. Since $T(B)$ is a submonomial, there exist permutation matrices P, Q such that $T(B)=P B Q$. So, without loss of generality, let $T(B)=B=$ $I_{k} \oplus \mathbf{0}_{m-k, n-k}$ and $P=I_{k} \oplus P^{\prime}, Q=I_{k} \oplus Q^{\prime}$ where P^{\prime} and Q^{\prime} are $(m-k) \times(m-k), \quad(n-k) \times(n-k)$ permutation matrices, resp. Since $T(B)$ is a submonomial, there exists a submonomial matrix D such that $t(D)=m-k$ and $T(B)+D$ is a monomial matrix. Thus, $T(B)+D=P A Q$. That is, $D=P(A \backslash B) Q$. If $T(D)$ is a submonomial matrix, then $T(D)=P D Q$ and $T(B+D)=P(B+D) Q$ is a monomial matrix. Thus, if $T(D)$ is a submonomial matrix, we can construct a monomial matrix that whose image is a monomial matrix.

Now, suppose that $T(D)$ is not submonomial for any $1 \leq k<m$. For k, we can choose the $k=m-2$. Then

$$
\begin{aligned}
T(D) & =\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \oplus \mathbf{0}_{m-2, n-2}, \text { or } \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \oplus \mathbf{0}_{m-2, n-2}
\end{aligned}
$$

Without loss of generality, we may assume that

$$
T(D)=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \oplus \mathbf{0}_{m-2, n-2} \text { and } D=I_{2} \oplus \mathbf{0}_{m-2, n-2}
$$

Then, we only consider the linear preserving operator T on $\mathcal{M}_{2,2}(\mathcal{S})$.
Since T is bijective on the set of cells, without loss of generality, let $T\left(E_{11}\right)=E_{11}$. Then $T\left(E_{22}\right)=E_{12}$. Also, we may assume that $T\left(E_{21}\right)=E_{21}$. Then $T\left(E_{12}\right)=E_{22}$. Since $T\left(A^{t}\right)=T(A)^{t}$ for $A \in$ $\mathcal{M}_{2,2}(\mathcal{S})$,

$$
\begin{aligned}
T\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]^{t}\right) & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{t}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \neq\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=T\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right)=T\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]^{t}\right) .
\end{aligned}
$$

Therefore, there exists a monomial matrix $M \in \mathcal{M}$ such that $T(M)$ is a monomial matrix.

Theorem 5. Let $T\left(A^{t}\right)=T(A)^{t}$ for $A \in \mathcal{M}_{2,2}(\mathcal{S})$ and T be a domination preserving operator on \mathcal{M}. Then T preserves term rank 1 and term rank 2.

Proof. First, we prove that T preserves term rank 1.
Suppose that T is not a term rank 1 preserver. Without loss of generality, let $T\left(E_{p q}\right)=E_{i j}$ and $T\left(E_{p v}\right)=E_{r s}, i \neq r, j \neq s$. Then, there exists a matrix M such that $|M|=m, E_{p q}+E_{p v} \leq M$ and $T(M)$ is a monomial. That is,

$$
T\left(E_{p q}+E_{p v}\right)=E_{i j}+E_{r s} \leq T(M) .
$$

By Lemma 3 and Lemma 4, T preserves monomial matrices on \mathcal{M}. Thus, this is a contradiction and hence T preserves term rank 1.

Now, suppose that T is not a term rank 2 preserver. Then, there exist i, j, r, s such that

$$
T\left(E_{i j}+E_{r s}\right)=E_{p q}+E_{p v}, \quad i \neq r, j \neq s .
$$

Since T preserves term rank 1 , this is a contradiction. Therefore, T preserves term rank 1 and term rank 2.

An immediate consequence of the above Theorem 5 is the following:

Gwang-Yeon Lee and Hang-Kyun Shin

Theorem 6. If \mathcal{S} is any semiring, then the following are equivalent for any linear operator T on \mathcal{M}.
(i) T is a (P, Q, B) operator.
(ii) T preserves term rank.
(iii) T preserves term rank 1 and term rank 2.
(iv) T strongly preserves term rank 1 .
(v) T is nonsingular and preserves term rank 1 (when \mathcal{S} is \mathcal{S} a field).
(vi) T is nonsigular and preserves domination with $T\left(A^{t}\right)=T(A)^{t}$ for $A \in \mathcal{M}_{2,2}(\mathcal{S})$.

Since, by above Theorem A and Theorem 5, the Theorem 6 is obvious, we state it without proof.

Acknowledgements. Special thanks go to the referee for a thorough and careful reading of the original draft.

References

1. L. B. Beasley and N. J. Pullman, Term-Rank, Permanent, and Rook-Polynomial Preservers, Linear Algebra Appl. 90 (1987), 33-46.
2. \qquad , Linear Operators That Preserve Term Rank 1, Proc. R. Ir. Acad. 91A,No. 1 (1991), 71-78.
3. L. B. Beasley, G. Y. Lee and S. G. Lee, Linear Transformation That Preserve The Assignment, Linear Algebra Appl. 212-213 (1994), 387-396.
4. __, Linear Transformation That Preserve The Assignment II, to appear in J.K.M.S..
5. L. B. Beasley and S. G. Lee, Linear Operators Preserving r-potent Matrices Over Semirings, Linear Algebra Appl. 164 (1992), 588-600.

Department of Mathematics, Hanseo University, Seosan 356-820, Korea

Department of Mathematios Education, Woosuk University, Wanju-Gun, Сhonbok 565-701, Korea

[^0]: Received March 27, 1995. Revised June 14, 1996.
 1991 AMS Subject Classification: 05C50, 15A04.
 Key words and phrases: linear preserver, domination, term rank.
 This study is supported by Korean Ministry of Education through Reaserch Fund (BSRI-96-1432).

