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EXTENDED INVERSE THEOREMS FOR RESTRICTED
SUMSET IN INTEGERS

MoHAN AND RAM KRISHNA PANDEY

ABSTRACT. Let h and k be positive integers such that h < k. Let A =
{ap,a1,...,ax—1} be a nonempty finite set of k integers. The h-fold
sumset, denoted by hA, is a set of integers that can be expressed as a
sum of h elements (not necessarily distinct) of A. The restricted h-fold
sumset, denoted by h"\ A, is a set of integers that can be expressed as a sum
of h distinct elements of A. The characterization of the underlying set for
small deviation from the minimum size of the sumset is called an extended
inverse problem. Freiman studied such a problem and proved a theorem
for 2A, which is known as Freiman’s 3k — 4 theorem. Very recently, Tang
and Xing, and Mohan and Pandey studied some more extended inverse
problems for the sumset hA, where h > 2. In this article, we prove some
extended inverse theorems for sumsets 2" A, 3" A and 4" A. In particular,
we classify the set(s) A for which |2MA| = 2k — 2, [2"A| = 2k — 1, and
|2 A| = 2k. Furthermore, we also classify set(s) A when |3 A| = 3k — 7,
[37NA| = 3k — 6, and |[4"NA| = 4k — 14.

1. Introduction

Let N and Z be sets of positive integers and all integers, respectively. Let
A = {ag,a1,...,ar_1} be a nonempty finite set of k integers with ag < a1 <
as < -+ < agp—1 and h be a positive integer. The h-fold sumset and the
restricted h-fold sumset, denoted by hA and h" A, respectively, are defined as

k—1 k—1
hA =<3 Nag: A e NU{0} for i =0,1,...,k—1with 3 X\ =h,
i=0 =0
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and

k—1 k-1
h"A = {ZAiai : A €{0,1} for i =0,1,...,k — 1 with Z/\i:h}'
i=0 i=0
In hA, each a; appears at most h times as a summand, but in A A, each a;
can appear at most once, so h < k in h" A.
Throughout the paper, |A| denotes the cardinality of the set A. For integers
a and S, let

axA:={aa:ac A},

A+p:={a+pB:a€ A},
and

[a?/B] = {a?a+1""’/6}'

For a > 3, we assume [, 3] = 0. For a given real number z, | x| denotes the
floor function of z. By min(A) and max(A), we mean the smallest and largest
element of the set A, respectively. The greatest common divisor of the integers
Z1,&a,...,xy is denoted by d (z1,xa,...,xx). Let A ={ap,a1,...,ar—1} be a
set of integers with ag < a1 < -+ < ax_1. Then, we define

d(A — ag) := d(a1 — ag,a2 — ag, ..., ax—1 — ao)

and
AN g = G900 e gL
a; d(A—ay) a; €
Here min(A™)) = 0 and d(A™N)) = 1. The set A is called the normal form
of A. Note also that

h((ax A) + B) = (a* (hA)) +hB and " ((a x A) + 8) = (a* (K" A)) + hp.

So |hA| and |h" A are translation and dilation invariant of the set A.

A direct problem associated with a sumset is to determine the minimum
cardinality and properties of the sumset, and the inverse problem is the char-
acterization of the underlying set for the minimum cardinality of the sumset.
Problems associated with sumsets in groups have been the topic of study for
more than two centuries. In 1813, Cauchy [1] studied sumset A + B, where
A and B are nonempty subsets of residue classes modulo a prime p. Later,
it was rediscovered by Davenport in 1935, so the result is known as Cauchy-
Davenport Theorem [2]. The precise statement of Cauchy-Davenport Theorem
is as follows.

Theorem 1.1 ([12, Theorem 2.3]). Let A and B be nonempty finite subsets of
Zy. Then
A+ B| > min{]A] + B~ 1, p}.

Much later, Nathanson studied direct and inverse problems for hA and h" A.

Theorem 1.2 ([12, Theorem 1.4, Theorem 1.6]). Let h > 1 and A be a
nonempty finite set of integers. Then
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|hA| > h|A| —h+1.
This lower bound is best possible. Furthermore, if |hA| attains this lower bound
with h > 2, then A is an arithmetic progression.

Theorem 1.3 ([12, Theorem 1.9, Theorem 1.10]). Let A be a nonempty finite
set of integers, and let 1 < h < |A|. Then

|WNA| > h|A] — h? + 1.
This lower bound is best possible. Furthermore, if |W"A| = h|A| — h% + 1 with
|A] > 5 and 2 < h < |A| — 2, then A is an arithmetic progression.

Characterization of the underlying set for small deviation from the minimum
size of the sumset is called an extended inverse problem. The following results,
Theorem 1.4 and Theorem 1.5, are some direct and extended inverse theorem
for 2A proved by Freiman [3].

Theorem 1.4 ([3, Theorem 1.10]). Let k > 3 and A = {ag,a1,...,ak-1} be a
set of integers such that 0 = ag < a1 < --- < ap—1 with d(A) = 1.

(a) If ax—1 <2k — 3, then |2A| > k + aj—_1.

(b) If ax—1 > 2k — 2, then |2A] > 3k — 3.
Theorem 1.5 ([3, Theorem 1.9]). Let A be a finite set of k > 3 integers. If
|2A| =2k — 1+ b < 3k — 3, then A is a subset of an arithmetic progression of
length at most k + b.

Lev [8] generalized Theorem 1.4 for hA. Recently, Tang and Xing [16] proved
some extended inverse theorems for hA. Mohan and Pandey [11] extended the
work of Tang and Xing and studied all possible inverse theorems for |hA| when
hk —h+1 < |hA| < hk 4+ 2h + 1. Some extended inverse theorems have been
studied in abelian groups [5-7].

To the best of our knowledge, there is no analogous extended inverse theorem
for h A. Freiman conjectured (in personal communication with Lev) and also
independently by Lev [9] the following conjecture.

Conjecture 1.6. Let A = {ag,a1,...,ax5—1} be a set of &k > 7 integers such
that 0 = ap < a1 < -+ < agp—1 with d(A) = 1. Then

ak—1+k—2 ifak_1§2k;—5
3k —17 if ap_1 > 2k — 4.
The lower bounds are tight, as letting A = {0,1,...,k—3}U{ar—1 —1,ar-1},
we get 20"A ={1,2,...,2k— 7} U{ag-1—1,...,ak—1 + k — 3} U{2a,—1 — 1}.
Freiman et al. [4] did some work in proving Conjecture 1.6 but Theorem 1.7
by Lev [9] is close to Conjecture 1.6.

Theorem 1.7. Let A = {ag,a1,...,ak—1} be a set of k > 3 integers such that
0=ap<ay <--<ap_1 withd(A) =1. Then
_ ; < _
20 4| > ag—1+k—2 z.fak_l_Zk 5
@+1Dk—6 ifag_1 > 2k —4,

|27 A| > min{ay_1,2k =5} + k-2 = {
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(1+5)

where § = — 1s the ‘golden mean’.

Some other important results on restricted sumset can be seen in [14], [10],
[13], and [15]. In this article, we prove the extended inverse theorem for 2" A,
Theorem 1.8 and consequently, we prove extended inverse theorems for 3" A
and 4" A, Theorem 1.9 and Theorem 1.10, respectively. In Section 2, we have
proved Theorem 1.8. Section 3, proofs of Theorem 1.9 and Theorem 1.10 are
given. The precise statement of the main results of this paper is as follows.

Theorem 1.8. Let k > 7 be a positive integer. Let A be a finite set of k
nonnegative integers with min(A) = 0 and d(A) = 1. Then

(1) |27A| = 2k—2 if and only if A = [0, k]\{x}, wherex € {1,2,k—2,k—1}.

(2) Fork>9, |2°A] =2k — 1 if and only if A= 1[0,k + 1]\ {z,y}, where
{z,y} is one of the sets {1,2}, {k—1,k}, {2,3}, {k—2,k -1}, {1,3},
{k—2,k}, {1,4}, {k—3,k}, {1k}, {1,k —1}, {2,k}, {2,k — 1}, and
{i,k + 1}, where 3 <i<k—3.

(3) For k > 11, |2A| = 2k if and only if A = [0,k + 2] \ {=,y, 2z}, where
{z,y,z} is one of the sets {3,4,k+2}, {k—3,k—2,k+2}, {2,4,k+2},
{k—3,k—1,k+2}, {2,5, k+2}, {k—4, k—1,k+2}, {1,2,3}, {k—1,k, k+
1}, {2,3,4), {k— 2,k — 1.k}, {1,2,4}, {k — 2.k, k+ 1}, {1,2,k + 1},
{1k, k+1}, {1,3,4}, {k— 2,k — 1,k + 1}, {1,2,5}, {k —3,k, k+ 1},
{1,2,k}, {2,k, k+1}, {2,3,k}, {2,k—1,k}, {1,2,6}, {k—4,k, k+1},
2,3,k + 1}, {1,k — 1,k}, {1,3,5}, {k— 3,k — Lk + 1}, {1,3,k},
{2, k—1,k+1}, {1,3,k+1}, {1, k—1,k+1}, {1,4,6}, {k—4,k—2,k+1},
{1,4,k}, {2,k—2,k+1}, {1,4, k+1}, {1, k—2,k+1}, {4, 5, k+2}, where
i€{l,2} withi+4<j<k-—2,and {i,j,k+ 2}, where3<i<j—4
with j € {k — 1,k}.

Theorem 1.9. Let A be a finite set of k nonnegative integers with min(A) =0
and d(A) = 1. Then
(1) For k > 10, |3"A| = 3k — 7 if and only if A = [0,k] \ {z}, where
re{l,k—1}.
(2) Fork > 12, |3"A| =3k — 6 if and only if A= [0,k + 1]\ {z,y}, where
{z,y} is one of the sets {2, k+1}, {3, k+1}, {k—3,k+1}, {k—2,k+1},
{L 2}7 {k - 17 k}} and {17 k}

Theorem 1.10. Let k > 12 be a positive integer and A be a finite set of k
nonnegative integers with min(A) = 0 and d(A) = 1. Then |[4"A| = 4k — 14 if
and only if A =10,k]\ {z}, where x € {1,k — 1}.

2. Proof of Theorem 1.8
56+ 15

Lemma 2.1. Let b be a positive integer and k > + 1 be an integer.
Let A be a nonempty finite set of k integers such that |2"A| = 2k —3+b. Then

A(N):[O,kerfl}\{xl,...,xb}, where 1 <zx1 < ---<axp, <k+b—1.
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Proof. Since the cardinality of sumset is translation and dilation invariant, we
have A = {ag,a1,...,ap—1} with 0 = a9 < a1 < -+ < ag—1 and d(A) = 1.
Now, if ap_1 > 2k — 4, then by Theorem 1.7,

2k —3+b=|2"A| > 2.6k — 6.

b+1 b+1
This gives k < ob+ 15 < {5 —g 5J + 1, which is a contradiction. Therefore

arp—1 < 2k — 5. Again by Theorem 1.7,
2k—3+b= |2/\A| >ag—1+k—2.

This gives ag_1 < k+b—1. Hence AN) = [0, k+b—1]\{x1,...,2p}, where 1 <
1 < -+ <xp < k+b—1. This completes the proof of the lemma. O

In Proposition 2.2, we find |2" A| when A = {ag,a1,...,ax—1} = [0, k] \ {z},
where 0 < ag < a; < -+ <ap_1 < kand 0 <x < k. Since the cardinality of
sumset is translation invariant, therefore we assume ag = 0 and = > 1. Note
also that, if z = k, then A = {ag,a1,...,a5-1} = [0,k — 1], and this gives
|27 A| = 2k — 3. Therefore, we assume ax_1 =k and z < k — 1.

Proposition 2.2. Let k > 5 be a positive integer and A = [0, k] \ {z}, where
1<z <k—1. Then the following hold.

(1) Ifx € {1,2,k — 2,k — 1}, then |2"A| = 2k — 2.

(2) If3<x<k-—3, then |2 A| = 2k — 1.

Proof. (1) If x = 1, then A = {0} U [2,k]. So 2"A = [2,2k — 1]. If 2 = 2,

then A = {0,1} U [3,k]. So 2"A = {1} U [3,2k —1]. If z € {k — 1,k — 2},

then we write A = [0,k] \ {«} = k — {[0,k] \ {y}}, where y € {1,2}. So

|27 A = 127([0, k] \ {y})|, where y € {1,2}. Hence, in each case |2 A| = 2k —2.
(2) If3<2<k-—3,then A= [0, — 1)U [z + 1,k]. Clearly

Lz —1Uz+Lk+z—-1Uk+z+1,2k—1] C2"A

Sincex—1>landzx+1<k—1,wehavez=2—-1+1€2"Aand k+ 2=
(k—1)+ (x+1) e 2"A. So 2" A = [1,2k — 1], giving 2" A| = 2k — 1. O

Next, we find [2"A| when A = {ag,a1,...,ak_1} = [0,k + 1]\ {z,y}, where
0=ay<a < - <ap1 <k+landl <z <y<k+1 Note that, if
y=k+1, then A= {ag,a1,...,ak-1} = [0,k] \ {z}, where 1 <z <k and this
was already considered in Proposition 2.2. Therefore, we assume y < k and
ap—1 =k+1.

Proposition 2.3. Let k > 5 be a positive integer and A = [0, k+ 1]\ {z, z+ 1},
where 1 < x <k —1.

(1) Ifx € {1,k — 1}, then |2/ A| = 2k — 1.
% -1 ifk>6

(2) If x € {2,k — 2}, then|2AA|:{8 fh—5
if k=5.
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% ifk>T
(3) Ifz € {3,k — 3}, then |2"A| =411 ifk=26
8  ifk=5.

(4) Ifz €[4,k — 4], then |2"A| = 2k + 1.
Proof. (1) If x =1, then A = {0} U[3,k + 1]. Note that
[3,k+1]U[k+4,2k+1] C2"A.

Since k >5,s0k+2=k—1+3€2"A and k+ 3 € 2" A. Therefore 2" A =
[3,2k+1]. Iz = k—1, then A = [0, k—2]U{k+1} = k-+1—({0}U[3, k+1]). Since
|27 A] is translation invariant, we have |2"A| = |2/ ({0} U [3, k + 1])|. Hence, in
both the cases [2"A| = 2k — 1.

(2) If = 2, then A ={0,1} U [4,k + 1]. Clearly

{13U4,k+2Ulk+4,2k+1] C2"A.
Also, if k > 6, then k +3 =%k — 1+ 4 € 2" A. Therefore

oA 4 — {1} U [4,2k + 1] ifk>6
©14{1,4,5,6,7,9,10,11} if k=5.

Ifo=k—2 then A=[0,k—-3]U{k,k+1}=k+1—-({0,1} U[4,k+1]). So
|27 A| = [2({0,1} U [4,k + 1])|. Hence, in both the cases

2% —1 ifk>
2°4] = Lhet
8 if k=5.
(3) If = 3, then A = {0,1,2} U [5,k + 1]. Clearly
{1,2,3}U[5,k + 3]U [k + 6,2k + 1] C 2" A.

Note that, if k > 7, then k+4 = k—1+5 € 2" A, and if k > 6, then k+5 € 2" A.
Therefore

{1,2,3YU 5,2k + 1] ifk>7
2"A=<{1,2,3,56,7,89,11,12,13} ifk=6
{1,2,3,5,6,7,8,11} if k=5.

Ifx=k—3,then A=[0,k—4)U{k—1,k k+1} =k+1—({0,1,2}U[5,k+1]).
So |27 A| =12"({0,1,2} U [5,k + 1])|. Hence, in both the cases

2k ifk>T

204 =411 ifk=6

8 if k =5.
(4) If x € [4,k—4], then A = [0,z —1]U [z + 2,k +1]. Clearly 2" A = [1,2k +1]
and therefore |2 A| = 2k + 1. O

Proposition 2.4. Let k > 5 be a positive integer and A = [0, k+1]\{z,z+2},
where 1 <z <k — 2.

(1) If x € {1,k — 2}, then |2"A| = 2k — 1.
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o% ifk>6
9 ifk=5
(3) Ifx € [3,k — 4], then |2"A| = 2k + 1.

(2) If x € {2,k — 3}, then |2/ A| =

Proof. (1) If z =1, then A ={0,2} U4,k + 1]. It is easy to see that
2MA = {2} U 4,2k +1].

Ife=k—2,then A=[0,k-3JU{k—1Lk+1}=k+1—({0,2} U[4,k +1]).
So |2"A] =12"({0,2} U [4, k + 1])|. Hence, in both the cases [2"A| = 2k — 1.

(2) If £ = 2, then A = {0,1,3} U [5,k + 1]. Clearly {1} U [3,k + 4] U [k +
6,2k + 1] C 2" A. Note that, if k > 6, then k + 5 € 2" A. Therefore

on g JITUB. 26+ 1] ifk>6
©14{1,3,4,5,6,7,8,9,11} if k=5.

Ife =k—3, then A =[0,k—4U{k—2,k, k+1} =k+1—({0,1,3}U[5,k+1]).
So |27 A =12"({0,1,3} U [5,k + 1])|. Hence, in both the cases

2 if k>
|2/\A|: k ?k_6
9 if k=5.

(3) If z € [3,k — 4], then A= [0,z — 1]U{x+ 1} Uz + 3,k + 1]. It follows
that 2°A = [1,2k + 1] and |27 A| = 2k + 1. O

Proposition 2.5. Let k > 5 be a positive integer and A = [0, k+ 1]\ {z, z+3},
where 1 < x < k — 3.

(1) If x € {1,k — 3}, then

— ) >
27 4] = %=1 k=6
8 if k= 5.

(2) If x € {2,k — 4} with k > 6, then

S
(3) Ifx € [3,k — 5], then |2 A| = 2k + 1.
Proof. (1) If x =1, then A = {0,2,3} U [5,k + 1]. Clearly
{2,3YU[5,k+4]U[k+ 6,2k + 1] C 2" A.
Note that, if ¥ > 6, then k + 5 € 2" A. Therefore

ong - J{23YUB. 2R+ i k>0
- 1{2,3,5,6,7,8,9,11} if k=5.
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If x = k-3, then A = [0, k—4)U{k—2,k—1,k+1} = k+1—({0, 2, 3}U[5, k+1]).
Hence, in both the cases

2k—1 if k>
PO S
8 if k=5.
2) If z =2, then A=1{0,1,3,4} U[6,k + 1]. It is easy to see that
(
{13 UBk+2]U{k+4,k+5} C2"A.

Since k > 6, we have k + 3 € 2"A and [k + 7,2k + 1] C 2"A. Also, if k > 7,
then k + 6 € 2" A. Therefore

on g - JTTUB 2k +1] ifk>7
©14{1,3,4,5,6,7,8,9,10,11,13}  if k = 6.

Ife=k—4,then A=[0,k—5U{k—-3,k—2,kk+1} =k+1—-({0,1,3,4} U
[6,k + 1]). Hence, in both the cases

i >
|2AA|{% if k> 7

11 if k=6.
B)Ifze[3,k—5],then A=[0,z —1|JU{z+ 1,z +2}U[z+4,k+1]. Itis
easy to see that 2" A = [1,2k + 1] and |2"A| = 2k + 1. O

Proposition 2.6. Let k > 5 be a positive integer and A = [0,k + 1]\ {z,y},
wherel <z <y<kandy—x>4.
(1) If {z,y} is one of the sets {1,k} and {2,k — 1}, then |2"A| = 2k — 1.
(2) Ifk > 6 and {x,y} is one of the sets {1,k—1} and {2, k}, then |2"A| =
2k — 1.
(3) Ifxe{l,2} and x+4 <y <k —2, then |2"A| = 2k.
(4) If3<z<y—4andy € {k,k— 1}, then |2"A| = 2k.
(5) If3<zx<y—4<k—6, then |2"A| =2k + 1.

Proof. (1) If {z,y} = {1,k}, then A = {0} U[2,k —1]U{k +1}. It follows that
2,k —1JU{k+1}U [k +3,2k] C2"A.

Since k > 5, wehave k =k —2+2c2MMand k+2 =k —-1+3 ¢ 2"A.
Therefore 2" A = [2,2k]. So |2"A| = 2k — 1.

If {x,y} = {2,k — 1}, then A= {0,1} U [3,k — 2] U{k,k + 1}. It is easy see
that 2°A = {1} U [3,2k — 1] U {2k + 1} and [2° 4] = 2k — 1.

(2) If {z,y} = {1,k — 1}, then A = {0} U [2,k — 2] U {k,k + 1}. It follows
that

2,k — 2] U [k, 2k — 1] U {2k + 1} C 2" A.

Note that 2k ¢ 2" A, and if k > 6, then k — 1 = k — 3 + 2 € 2" A. Therefore
2MA = [2,2k — 1 U {2k + 1}. If {z,y} = {2,k}, then A ={0,1} U[3,k — 1] U
{k+1}=k+1—- ({0} U[2,k —2] U {k,k + 1}). Therefore, in both the cases
27 Al = 2k — 1.
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B)Ifze{l,2tandx+4<y<k—2 then A=[0,z —1U[z+ 1,y —1]U
+ 1,k + 1]. It is easy to see that
[y y

2"A = [1,2k + 1]\ {z}, where x € {1,2}.

Therefore |2 A| = 2k.

D If3<z<y—4andye {kk—1},then A= [0,z —1|U[z+1,y—1]U[y+
LE+1)=k+1—([0,20 —1]U[zo+ 1,50 — 1]U[yo + 1, k + 1]) where z¢ € {1,2}
and zg + 4 < yo < k — 2. Therefore, by the previous case |2"A| = 2k.

G)If3<z<y<k—2then A=[0,z—1|U[z+1,y—1U[y+1,k+1].
It is easy to see that 2" A = [1,2k + 1]. So |2 4| = 2k + 1. O

Next we find 2" A| when A = [0, k+2)\{z,y,z} withl1 <z <y <z <k+1.
Proposition 2.7 is based on the case when z, y, and z are consecutive integers.

Proposition 2.7. Let k > 5 be a positive integer and A = [0,k + 2]\ {z,z +
1,z + 2}, wherel <z <k-—1.
(1) If x € {1,k — 1}, then

2 if k>
|2/\A|: k ?k_6
9 if k=5.

(2) If € {2,k — 2}, then

2k ifk>7
[2"Al =411 ifk=6
8 ifk=5.

(3) If z € {3,k — 3} with k£ > 6, then

2k+1 ifk>8
1274l =< 14 ifh=7
11 if k = 6.

(4) If x € {4,k — 4} with k > 8, then
=
(5) If z € [5,k — 5] with k > 10, then |2 A| = 2k + 3.
Proof. (1) If z =1, then A= {0} U4, k + 2]. Clearly
[4,k 4+ 2] U [k +4,2k + 3] C 2" A.
Note that, if & > 6, then k+ 3 = (k — 1) + 4 € 2" A. Therefore

on g J[42k+3] ifk>6
-~ 1{4,5,6,7,9,10,11,12,13}  if k = 5.
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Ifzx=Fk—1 then A=[0,k—2]U{k+2} =k+2— ({0} U[4,k +2]). Hence,

in both the cases
2k ifk>6
20 4] = o
9 if k=25.

(2) If = 2, then A ={0,1} U [5,k + 2]. Clearly
{1}U[5,k+3]U[k+ 6,2k + 3] C 2" A.

Note that, if k > 6, then k+5 € 2" A, and if k > 7, then k+4 = k—1+5 € 2" A.
Therefore

{1} U[5,2k + 3] ifk>7
A =<{1,56,7,8,9,11,12,13,14,15} if k=6
{1,5,6,7,8,11,12, 13} if k=5.

Ifoe=k—2,then A=[0,k—-3JU{k+1,k+2} =k+2—({0,1} U[5,k+2]).
Hence, in both the cases

2k ifk>7
|2°A]=<11 ifk=6
8 ifk=5.

(3) If = 3, then A = {0,1,2} U [6,k + 2]. It follows that
{1,2,3}U[6,k+ 4] U[k+ 7,2k + 3] C 2" A.

Note that, if k > 8, then k+5 =k —1+6 € 2" A, and if k > 7, then k+6 € 2" A.
Therefore

{1,2,3} U [6,2k + 3] if k> 8
2"A=1{1{1,2,3,6,7,8,9,10,11,13,14,15,16,17} if k=7
{1,2,3,6,7,8,9,10,13,14, 15} if k = 6.

Ifx =k—3,then A=[0,k—4)U{k,k+1,k+2} =k+2—({0,1,2}U[6,k+2]).
Hence, in both the cases

2k+1 ifk>38
2°4] = { 14 ifk=7
11 if k =6.
(4) If = 4, then A ={0,1,2,3} U[7,k + 2]. Tt follows that
{1,2,3,4,5} U7,k + 5] U [k + 7,2k + 3] C 2" A.
Note that, if k > 9, then k+6 =k — 1+ 7 € 2" A. Therefore

on g — JILBIUIT, 2k 4 3] if k>9
| [1,5]U[7,13|U[15,19] if k=8.
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Ifx=k—4,then A=1[0,k—5|U[k—1,k+2] =k+2-({0,1,2,3}U[7,k+2]).
Hence, in both the cases

2k+2 ifk>9
R S
17 if kK =38.

(5) If x € [5,k — 5], then A = [0,z —1]U [z + 3,k + 2]. It is easy to see that
2"A = [1,2k + 3] and 2" 4| = 2k + 3. O

Proposition 2.8 and Proposition 2.9 are based on the case when exactly two
of x,y, z are consecutive integers. In Proposition 2.8, we consider the case when
A=10,k+2]\{z,y, 2z}, wherey = z+1land 1 < z <y < z < k+1. Note that, if
A=10,k+2]\{z,y, 2z} withy = 2+1, then A’ = k+2—A = [0, k+2]\{z0, yo, 20}
where yo = 2o — 1. Therefore, it is sufficient to find |2"A| when z and y are
consecutive. Hence, we obtain Proposition 2.9 from the Proposition 2.8 by
replacing A to (k+2) — A.

Proposition 2.8. Let k > 5 be a positive integer and A = [0,k + 2]\ {x,y, 2},
wherey=c+landl <z <y<z<k+1.

(1) If {z,y,2} = {1,2,4}, then |2 A| = 2k.

(2) If {x,y,z} is one of the sets {1,2,k+1} and {k—2,k—1,k+ 1}, then

] >
20| = 2k %fk76
9 if k=05.

% ifk>6
8 ifk=5.
(4) If k > 6 and {x,y,z} is one of the sets {1,2,k} and {2,3,k}, then

2] = {% et
11  ifk=6.
(5) If k> 7 and {z,y,2} = {1,2,6}, then |2 A| = 2k.
(6) If k > 6 and {z,y,2} = {2,3,k + 1}, then |2"A| = 2k.
2k+1 ifk>6
9 if k=5.
%1 ifk>T
2k—1 ifk=25 oré6.
9) If k>7 and {z,y,z} ={k — 3,k — 2,k + 1}, then |2/ A| = 2k + 1.
(10) If k > 8 and {z,y, z} is one of the sets {k —4,k —3,k}, {2,3,i} where
7<i<k-—1, and {1,2,i} where 7 <i<k—1, then |2"A| =2k + 1.
(11) Ifk > 6 and {x,y, z} is one of the sets {k—3,k—2,k} and {3,4,k+1},
then

(3) If {z,y,z} = {1,2,5}, then |27 A| =

(7) If {x,y, 2} = {2,3,5}, then 2" A] =

(8) If {z,y,2} = {2,3,6}, then [2"A| = {

2 1 if k>
20 A = k+ z.fk_7
12 if k = 6.
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(12) If {z,y, 2} = {3,4, k} with k > 6, then
2 1 ifk>
2 A| = k + z'fk > 8
2k ifk=6orT.

(13) If k > 7 and {z,y, z} is one of the sets {3,4,i} where 6 < i <k —1,
{i,i+1,k} whered < i< k-5, and {i,i+1,k+1} where4 < i < k—4,
then |2"A| = 2k + 2.

(14) If{z,y, 2} = {i,i+1,5} where 4 <i < j—3 < k—4, then |2"A| = 2k+3.

Proof. (1) If {z,y,2z} = {1,2,4}, then A = {0,3} U [5,k + 2]. It follows that
2"A = {3} U [5,2k + 3]. So [2"A| = 2k.
(2) If {z,y,z} = {1,2,k+ 1}, then A = {0} U[3,k]U{k+2}. It follows that

[3,k] U [k + 2,2k + 2] C 2" A.
Note that, if k¥ > 6, then k+ 1 = (k —2) + 3 € 2" A. Therefore
g [13,25+2) if k> 6
(3,4,5,7,8,9,10,11,12}  if k = 5.

If {z,y,2} ={k—2,k— 1,k + 1}, then A = [0,k — 3] U {k, k + 2}. Tt follows
that
1,k —2]U[k,2k — 1] U {2k + 2} C 2" A.
Note that, if kK > 6, then k — 1 =k — 3+ 2 € 2" A. Therefore
g JIL2k—1Uf2k+2} k=6
{1,2,3,5,6,7,8,9,12} if k =5.

Hence, in both the cases

9 if k=5.
(3) If {z,y,2} = {1,2,5}, then A ={0,3,4} U[6,k + 2]. Tt follows that
{3,4}U[6,k+2]U{k+4,k+5,k+6}U[k+8,2k+3] C2"A.
Note that, if & > 6, then {k + 3,k + 7} C 2" A. Therefore

on g J{3:43U6.2k + 3] if k> 6
©143,4,6,7,9,10,11,13}  if k = 5.

i >
|2AA|:{21@ if k> 6

So

2k if k>
20| = k=0
8 if £k =5.

(4) I {x,y, 2z} = {1,2,k} with k > 6, then A = {0}U[3,k—1JU{k+1,k+2}.
It follows that

3,k —1JU[k+1,2k+1]U {2k + 3} C 2" A.
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Note that if k > 7, then k = k — 3 + 3 € 2" A. Therefore
oA 4 — [3,2k + 1] U {2k + 3} ifk>7
(3,4,5,7,8,9,10,11,12,13,15}  if k = 6.

If {z,y,2} = {2,3,k} with k > 6, then A ={0,1} U4,k —1]U{k+ 1,k + 2}.
Clearly
{1V U4,k+3]Ulk+5,2k+1]U {2k + 3} C2"A.
Note that, if k > 7, then k+4 =k — 1+ 5 € 2" A. Therefore
oA A — {1} U 4,2k + 1)U {2k + 3} itk>"7
{1,4,5,6,7,8,9,11,12,13,15}  if k = 6.
Hence, in each of the cases
2k i k>
2raj= 2 BT
11 if k=6.

(5) If {z,y,2z} ={1,2,6} with k > 7, then A ={0,3,4,5} U[7,k+2]. Tt is
easy to see that 2" A = {3,4,5} U [7,2k + 3]. So |2"A| = 2k.

(6) If {z,y,2} = {2,3,k + 1} with k > 6, then A ={0,1} U [4,k] U{k +2}.
It is easy to see that 2" A = {1} U [4, 2k + 2]. So [2"A| = 2k.

(7) It {z,y, 2} ={2,3,5}, then A ={0,1,4} U6,k + 2]|. It follows that

(YU, k+3JU{k+5k+6}U[k+8,2k+ 3] C2"A.
Note that, if k > 6, then k+4 and k+7 =k + 1 + 6 are in 2" A. Therefore
2AA:{{1}U[4,2k+3] ifk>6
{1,4,5,6,7,8,10,11,13} if k = 5.
So

9 it k=5.
(8) If {z,y, 2} = {2,3,6}, then A =1{0,1,4,5} U[7,k + 2]. It follows that
{LJU[4,k+3Ju{k+6,k+ 7} C2"A.
Note that, if £ > 7, then
{k+4,k+5}U[k+8,2k+ 3] C 2" A.

2 1 ifk>
|2AA|:{1€+ if k> 6

Therefore
{1} U 4,2k + 3] ifk>7
NA = {1,4,5,6,7,8,9,11,12,13,15} if k=6
{1,4,5,6,7,8,9,11,12} if k=05.
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So
2k+1 ifk>7
|27 A =<{ 11 ifk=6
9 if k=5.

(9) If {z,y,2} ={k—3,k—2,k+ 1} with £ > 7, then A =1[0,k —4] U {k —
1,k, k+2}. It follows that 2" A = [1,2k—1JU{2k+1, 2k+2}. So |2"A| = 2k+1.

(10) If {x,y, 2} = {k—4,k—3,k} with k > 8, then A = [0, k—5|U{k—2,k—
1,k+1,k+2}. It follows that 2" A = [1,2k — 3] U {2k — 1,2k, 2k + 1,2k + 3}.

If {z,y,2} = {2,3,i}, where 7 < i < k —1 with k > 8, then A = {0,1} U
4,5 —1]U[i + 1,k + 2]. It follows that 2" A = {1} U [4,2k + 3].

If {x,y,2} = {1,2,i}, where 7 < i <k —1, then A = {0} U[3,i —1JU[i +
1,k +2]. It follows that 2" A = [3, 2k + 3].

Hence, in each of the cases [2"A| = 2k + 1.

(11) If {z,y,2} = {k — 3,k — 2,k} with k > 6, then A = [0,k — 4] U {k —
1,k+ 1,k +2}. Tt follows that

1,k —3]U[k — 1,2k — 2] U {2k, 2k + 1,2k + 3} C 2" A.
Note that, if k > 7, then k — 2 =k — 4 + 2 € 2" A. Therefore
o JL 2= U {2k 2k + 1,2k +3} il k27
- 14{1,2,3,5,6,7,8,9,10,12,13,15}  if k = 6.
If {z,y,2} = {3,4,k + 1} with k > 6, then A = {0,1,2} U [5,k]U{k+2}. Tt
follows that
{1,2,3} U5,k +5]U[k+7,2k+2] C2"A.
Note that, if £ > 7, then k + 6 € 2" A. Therefore
on g~ 1123305, 2k +2) if k>7
©14{1,2,3,5,6,7,8,9,10,11,13,14}  if k = 6.
Hence, in both the cases

2k +1 if k>
DT
12 if Kk =6.

(12) If {z,y,z} = {3,4,k} with k > 6, then A ={0,1,2} U[5,k — 1] U {k +
1,k + 2}. Tt follows that

{1,2,3} U5,k + 4] U [k + 6,2k + 1] U {2k + 3} C 2" A.
Note that, if k > 8, then k+5 =k — 1+ 6 € 2" A. Therefore

{1,2,3} U [5,2k + 1] U {2k + 3} itk>8
2"A=<{1,2,3,5,6,7,8,9,10,12,13,15} if k=6
{1,2,3,5,6,7,8,9,10,11,13,14,15,17} ifk=T.
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So

2k ifk=6orT.

(13) If {z,y, 2} = {3,4,i}, where 6 <i <k —1, then A= {0,1,2} U [5,i —
Ui+ 1,k + 2]. It follows that 2" A = {1, 2,3} U [5, 2k + 3].

If {z,y, 2} = {i,i+1,k}, where 4 < i < k—5, then A =1[0,i—1]U[i+2,k—
1JU{k + 1,k + 2}. It follows that 2" A = [1,2k + 1] U {2k + 3}.

If {x,y, 2z} ={i,i+ 1,k + 1}, where 4 <i<k—4, then A=[0,i —1]U[i +
2, k] U {k + 2}. It follows that 2" A = [1, 2k + 2].

Hence, in each of the cases, |2"A| = 2k + 2.

(14) If {z,y,2} = {4,i + 1,5}, where 4 < i < j—3 < k — 4, then A =
[0,i—1U[i+2,7 —1]U[j + 1,k +2]. Tt easy to see that 2" A = [1,2k + 3]. So
|27 A| = 2k + 3. O

% +1 ifk>
2M”:{k+ if k> 8

Proposition 2.9. Let k > 5 be a positive integer and A = [0,k + 2]\ {=,y, 2},
where z=y+land 1 <z <y<z<k+1.

(1) If {z,y,2} ={k —2,k,k+ 1}, then |2 A| = 2k.
(2) If {x,y, 2z} is one of the sets {1,k,k + 1} and {1, 3,4}, then

] >
20| = 2k z.fk76
9 if k=05.

2k ifk>6
8  ifk=5.
(4) If k > 6 and {x,y,2} is one of the sets {2,k,k + 1} and {2,k — 1,k},

then
|2/\A| { k ) k

(3) If {z,y,2} ={k —3,k, k+ 1}, then |2"A| =

11 ifk=6.

(5) If{x,y,2} ={k —4,k,k+ 1} with k > 7, then |2"A| = 2k.
(6) If {x,y,2} = {1,k — 1,k} with k > 6, then |2"A| = 2k.
(7) If {z,y,2} ={k -3,k —1,k}, then

2k+1  ifk>
CIVTES S A
9 if k= 5.

(8) If {z,y,2} ={k—4,k - 1,k},

2k+1  if k>
EVTES S A
2k—1 ifk=25 oré6.

9) If {z,y, 2} = {1,4,5}, then |2 A| = 2k + 1.

(10) If {x,y, 2} is one of the sets {2,5,6}, {i,k —1,k} where 3 <i<k—25,
and {i,k,k + 1} where 3 <i <k —5, then |2"A| = 2k + 1.
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(11) If {z,y, z} is one of the sets {2,4,5} and {1,k — 2,k — 1} with k > 6,
then
2k+1  ifk>
TR A
12 if k= 6.

(12) If{z,y,2} = {2,k — 2,k — 1} with k > 6, then

2 1 if k>
21 A| = k+ z'fk_S
2k ifk=6orT.

(13) If {z,y,z} is one of the sets {i,k — 2,k — 1} where 3 < i < k — 4,
{2,4,i+ 1} where 6 <i <k —3, and {1,i,i+ 1} where 5 < i <k — 3,
then |2 A| = 2k + 2.

(14) If {z,y,2} = {i,4,5 + 1}, where 3 < i < j—2 <k —5, then |2"A| =
2k + 3.

In Proposition 2.10, we consider the case when A = [0,k + 2] \ {z,y, 2},
where 1 <z <y<z<k+1withy—2z=2and z—y > 3. Therefore, we get
Proposition 2.11 from Proposition 2.10 by replacing A to k + 2 — A.

Proposition 2.10. Let k > 5 be a positive integer and A = [0, k+ 2]\ {z, y, 2},
where l <z <y<z<k+1lwithy—x=2andz—y > 3.
) If {x,y, 2} = {1,3,k} with k > 6, then |2"A| = 2k.
B N Y

(2) If {z,y,2} ={1,3,k + 1}, then |2 A| = N ifk—5.
(3) If {z,y,2} ={k—4,k—2,k+ 1} with k > 7, then |2"A| = 2k.
2k+1 ifk>7
) 11 if k=6
(6) If k > 7 and {z,y,z} is one of the sets {2,4,k} and {1,3,i} where
6 <i<k-—1, then |2 A| = 2k + 1.
(6) If {z,y,z} is one of the sets {i,i + 2,k} where 3 <i <k —5, {i,i+

2,k + 1} where 3 <i <k —05, and {2,4,i} where 7 <i <k —1, then

If{z,y, 2} = {2,4,k+1} with k > 6, then |2 A| =

[27NA| = 2k + 2.
(1) If {z,y,2} = {i,i + 2,5}, where 3 < i < j—5<k—6, then [2"A|] =
2k + 3.

Proof. (1) If {x,y,z} = {1,3,k}, then A = {0,2} U [4,k —1JU{k + 1,k + 2}.
It follows that

{2VU4,k—1Uk+ 1,2k + 1] U {2k + 3} C 2" A.

Since k > 6, we have k = k — 2+ 2 € 2" A. Therefore 2" A = {2} U4, 2k + 1] U
{2k + 3}. So |2 A| = 2k.
(2) If {z,y,2z} = {1,3,k + 1}, then A = {0,2} U [4,k] U {k + 2}. Tt follows
that
{2VU4,k+2)U{k+4}U[k+6,2k+2] C 2" A.
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Note that, if k > 6, then k +3 =k — 144 and k + 5 are in 2" A. Therefore

274 = {2} U 4,2k 4 2] ifk>6
- 14{2,4,5,6,7,9,11,12}  if k= 5.

So

i >
|2AA|: 2k %fk_6
8 if k=25.

3) If {z,y,2} ={k—4,k —2,k+ 1} with £ > 7, then A =1[0,k —5]U{k —
3,k—1,k, k+2}. It is easy to see that 2" A = [1,2k—3|U{2k—1,2k+1,2k+2}.
So |2"A| = 2k.

(4) If {z,y,2z} = {2,4,k+1} with &k > 6, then A = {0,1,3}U[5, k]U{k+2}.
It follows that

{1YU[3,k+3|U{k+5}U[k+7,2k+2] C2"A.
Note that, if k > 7, then k+4 =k — 1+ 5 and k + 6 are in 2" A. Therefore

ogn g J (VB 2k +2] ifk>7
- 14{1,3,4,5,6,7,8,9,11,13,14}  if k = 6.

11 it k=6.

(5) If {z,y,2} = {2,4,k} with k > 7, then A = {0, 1,3}U[5, k—1]U{k+1, k+
2}. Tt is easy to see that 2" A = {1} U[3,2k + 1]U{2k + 3}. So |2"A| = 2k + 1.

If {z,y,2} = {1,3,i}, where 6 <i < k—1, then A ={0,2}U[4,i— 1 Ui+
1,k + 2]. It follows that

{2}Ul4,i —1JU[i+ 1,2k + 3] C 2" A.

Since i —2 > 4, we have i = i — 2+ 2 € 2" A. Therefore 2" A = {2} U [4, 2k + 3].
So |21 A| = 2k + 1.

(6) If {x,y, 2} = {i,i +2,k}, where 3 <i <k —5, then A=[0,i —1JU{i+
1 Ufi+3,k—1]U{k+1,k+2}. It follows that 2" A = [1,2k + 1] U {2k + 3}
So [2MA| = 2k + 2.

If {z,y,2} = {i,i+ 2,k + 1}, where 3 < i < k—5, then A =[0,s— 1] U {i +
1}U[i+3, kJU{k+2}. Tt is easy to see that 2" A = [1,2k+2]. So |2 A| = 2k+2.

If {z,y,2} ={2,4,i}, where 7 < i <k —1, then A ={0,1,3} U[5,s — 1] U
[i + 1,k +2]. It is easy to see that 2" A = {1} U [3,2k + 3]. So [2"A| = 2k + 2.

(7) If {z,y,2} = {i,i+ 2,5}, where 3 < i < j—5 < k—6, then A =
[0,i—1|U{i+1}U[i+3,7—1]U[j+1, k+2]. It is easy to see that 2" A = [1,2k+3].
So |2/ A| = 2k + 3. O

i >
|2AA|_{2k+1 if k> 7

Proposition 2.11. Let k > 5 be a positive integer and A = [0, k+2]\{z, vy, 2},
where l <z <y<z<k+1lwithy—2x>3andz—y=2.

(1) If{x,y,2} = {2,k — 1,k + 1} with k > 6, then |2 A| = 2k.
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% ifk>6
8 ifk=5.
(3) If k> 7 and {z,y,2} = {1,4,6}, then |2 A| = 2k.

(4) If {z,y,2} = {1,k — 2,k} with k > 6, then

) >
97 4| = 2k + 1 qk_7
11 if k= 6.

(5) Ifk > 8 and {z,y, z} is one of the sets {2,k—2,k}, and {i,k—1,k+1}
where 3 <1i < k—4, then |2"A| = 2k + 1.

(6) If{x,y,z} is one of the sets {2,1,14+2}, where5 < i < k-3, {1,4,i+2},
where 5 < i < k —3, and {i,k — 2,k}, where 3 < i < k —5, then

(2) If {z,y,2} = {1,k — 1,k + 1}, then |2"A| =

|20 A| = 2k + 2.
(7) If {z,y,2} = {i,7,] + 2}, where 3 < i< j—3<k—6, then |2"A| =
2k + 3.

Proposition 2.12. Let k > 5 be a positive integer and A = [0, k+2]\{z,y, 2},
where l<zx<y<z<k+4+lwithy—xz=2andz—y=2.

(1) If {x,y, =z} is one of the sets {1,3,5} and {k — 3,k — 1,k + 1}, then
2k ifk>6
20 Al = k2
9 if k=05.

(2) If k > 6 and {z,y, 2} is one of the sets {2,4,6} and {k — 4,k — 2,k},
then

2 2 if k>
20 A| = k+ z.fk_7
13 if k = 6.

(3) If{z,y,z} = {i,i+2,i+4}, where 3 <i < k—5, then |2"A| = 2k + 3.
Proof. (1) If {z,y,z} = {1,3,5}, then A ={0,2,4} U [6,k + 2]. We have
{2,4} U6,k + 6] U [k + 8,2k + 3] C 2" A.
Note that, if k > 6, then k+7 =k + 1+ 6 € 2" A. Therefore
2N4:{{14}Umﬂk+3] ifk>6
(2,4,6,7,8,9,10,11,13} if k=5

If {z,y,2} = {k—3,k—1,k+ 1}, then A = [0,k — 4] U {k — 2,k k + 2} =
kE+2—({0,2,4} U[6,k + 2]). It follows that [2"A| = |2"({0,2,4} U [6, k + 2])|.

Hence, in both the cases
2k ifk>6
2" 4] = e
9 if k =5.

(2) If {z,y, 2} = {2,4,6}, then A =1{0,1,3,5} U[7,k + 2]. We have
{13UB,k+3|U{k+5k+T7} C2MA.
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Since k> 6, wehave k +4=k+1+3c 2’4, k+6=k+1+5¢€2"A and
[k + 9,2k + 3] C 2" A. Note also that, if &k > 7, then k + 8 € 2" A. Therefore

g JTTUB 2K+ 3 if k> 7
©14{1,3,4,5,6,7,8,9,10,11,12,13,15}  if k = 6.

If{x,y, 2} ={k—4,k—2,k}, then A=[0,k—5|U{k—3,k—1,k+1,k+2} =
k+2—({0,1,3,5}U[7, k+2]). It follows that |2" A| = [2"({0, 1, 3,5}U[7, k+2])|.
Hence, in both the cases

2b+2 ifk >
P T
13 if £k =6.

(3) If {z,y,2} ={i,i +2,i+ 4}, where 3 < i <k —5, then A =[0,i — 1] U

{i+1,i4+3}U[i+5,k+2]. So2"A =[1,2k + 3], which gives |2 4| = 2k + 3.
(]

Proposition 2.13. Let k > 5 be a positive integer and A = [0, k+2]\ {x,y, z},
wherel <z <y<z<k+1lwithy—x>3andz—y>3.

(1) If k > 7 and {z,y, z} is one of the sets {1,4,k} and {2,k — 2,k + 1},

then |2 A| = 2k.
(2) If {z,y, 2} is one of the sets {1,4,k + 1} and {1,k — 2,k + 1} with
k > 6, then

] >
274 = 2 ifk=T
11 ifk=6.

(3) Ifk > 8 and {x,y, z} is one of the sets {1,i,k+1} whereb <i < k—3,
{1,4,i} where 7 < i < k—1, {i,k — 2,k + 1} where 3 < i < k —5,
{1,i,k} where 5 < i < k—3, {2,i,k + 1} where5 < i < k—3, and
{2,i,k} where 5 <1i <k —3, then [2"A| =2k + 1.

(4) If{x,y, z} is one of the sets {2,i,j} where5 < i < j—3 < k—4, {i,j,k}
where 3<i<j—3<k—6,{1,i,j} where5<i<j—3<k—4, and
{i,5,k + 1} where 3<i<j—3<k—6, then |2"A| = 2k + 2.

(5) If3<zx<y—3<z—-6<k—7, then |2 A| =2k + 3.

Proof. (1) If {z,y,2z} = {1,4,k} with k > 7, then A = {0,2,3} U [5,k — 1] U
{k+1,k+2}. It is easy to see that

2"A = {2,3} U 5,2k + 1] U {2k + 3}.

Therefore |2 A| = 2k.

If{z,y,2} ={2,k—2,k+ 1} with £ > 7, then A ={0,1}U[3,k - 3|U{k —
Lk k+2}=k+2-({0,2,3} U5,k —1]U{k+1,k+2}). So by the previous
case [2"A| = 2k.

(2) If {z,y,2} = {1,4,k+1} with & > 6, then A = {0,2,3}U[5, k]U{k+2}.
It is easy to see that {2,3} U [5,k 4+ 5] U [k + 7,2k + 2] C 2" A. Note also that,



1358 MOHAN AND R. K. PANDEY

if k> 7, then k + 6 € 2" A. Therefore

on g J (233U, 2k + 2] ifk>7
-~ 1{2,3,5,6,7,8,9,10,11,13,14}  if k = 6.

So

2k ifk>T
20 Al = L=
11 if k=6.

If {z,y,2} = {1,k — 2,k + 1} with ¥ > 6, then A = {0} U [2,k — 3] U {k —
Lk k+2y=k+2—-({0,2,3}U[5,k]U{k+2}). So by the previous case

2 ifk>7
2" Al = L=
11 if k=6.

(3) If {x,y,2} = {1,i,k + 1}, where 5 < i < k — 3, then A = {0} U [2,i —
Ui+ 1,k]U{k + 2}. Tt follows that 2" A = [2,2k + 2]. So |2 A| = 2k + 1.

If {z,y,2} = {1,4,i}, where 7 < i < k —1, then A = {0,2,3} U[5,i — 1] U
[i + 1,k + 2]. Tt follows that 2" A = {2,3} U [5,2k + 3]. So [2"A| = 2k + 1.

If {z,y,2} = {i,k — 2,k + 1}, where 3 <i < k—5, then A=1[0,i—1]U[i +
Lk=3lu{k—1,kk+2} =k+2—({0,2,3}U[5,7 —1JU[j + 1,k + 2]) where
7 < j <k —1. So by the previous case |2"A| = 2k + 1.

If {z,y,2} = {1,4,k}, where 5 < i <k —3, then A = {0} U[2,i —1]U[i +
1,k—1)U{k+ 1,k +2}. Tt is easy to see that 2" A = [2,2k + 1] U {2k + 3}. So
27 A| = 2k + 1.

If {z,y,2} ={2,i,k + 1}, where 5 < i < k —3, then A= {0,1}U[3,i — 1] U
[+ 1LkJu{k+2} =k+2—({0}U[2,i0 — 1 Uio + 1,k —1JU{k+1,k+2})
where 5 < iy < k — 3. So by the previous case [2"A| = 2k + 1.

If {z,y,2} = {2,i,k}, where 5 <i <k —3, then A={0,1}U[3,i —1JU[i +
1,k—1]U{k+ 1,k +2}. Therefore 2" A = {1} U[3,2k + 1] U {2k + 3}. Hence,
in each of the cases |2"A| = 2k + 1.

(4) If {z,y,z} = {2,4,7} where 5 < i< j—3<k—4, then A ={0,1} U
B,i—1JUi+1,j —1JU[j +1,k+2]. Therefore 2" A = {1} U[3, 2k + 3], which
gives |2"A| = 2k + 2.

If {,y,2} = {i,5,k} with3 <i<j—3<k—6,then A=1[0,i—1U[i+
Li—1Ulj+L,k—-1U{k+1,k+2} =k+2— ({0,1}U[3,ip — 1] U [ig +
1,50 = 1 U [jo + 1,k + 2]), where 5 < ig < jo — 3 < k — 4. So by the previous
case |2"A| = 2k + 2.

If {z,y,2} = {1,4,5}, where 5 <i < j—3<k—4, then A={0}U[2,i—
Ui+ 1,5 —1U[j+ 1,k +2]. It is easy to see that 2" A = [2,2k + 3]. So
20 A| = 2k + 2.

If{z,y,2} = {i,5,k+1}, where 3 <i < j—3 < k—6, then A =[0,i—1]U[i +
1,7—1U[j+1, k|JU{k+2} = k+2—({0}U[2,i0—1]U[i0+1, jo—1U[jo+1, k+2]),
where 5 < iy < jo — 3 < k — 4. So by the previous case |2 A| = 2k + 2.
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B)If3<e<y—3<z-6<k—7 then A=[0,z—-1Ufz+1y—
Uy +1,2z—1UJ[z+ 1,k +2]. Therefore 2"A = [1,2k + 3|, which gives
[27NA| = 2k + 3. O

Proof of Theorem 1.8. Lemma 2.1 and Proposition 2.2 together prove (1). Sim-
ilarly, we can prove (2) and (3) using Lemma 2.1 and Propositions 2.2-2.13. O

3. Proof of Theorem 1.9 and Theorem 1.10

Lemma 3.1. Let k > 5 and h > 2 be positive integers with h < k — 1.
Let A = {ag,a1,...,ax—1} be a finite set of k integers such that 0 = ag <
ap < -+ < ag—1 and d(A) = 1. If A = A\ {a1} and d(4") > 1, then
|RNA| > (2h — 1)k — 2h2 + 2.

Proof. Since d(A’) > 1, the sets (h — 1)"A’ + a; and h"* A’ are disjoint subsets
of K" A. Therefore, by Theorem 1.3, we have

|[RMAl > |(h— D)MA + aq| + [P A
>h-1)k-1)—(h—1)2+1+h(k—1)—-h*+1
= (2h — 1)k — 2h% + 2. 0

Lemma 3.2. Let k > 10 and A = {ag, a1, ...,ar—1} be a finite set of k integers
such that 0 = ag < a1 < -+ < ag—1. Let A = A\ {a1}, d(A") =1 and
[22A'| = 2(k — 1) — 1. Then
13" A| € {3k — 7,3k — 6,3k — 5}

Moreover, the following hold.

(1) If|13"A| =3k — 7, then A=0,k] \ {z}, where z € {1,k — 1, }.

(2) If |3"A| = 3k — 6, then A =0,k \ {z}, where v € {2,3,k — 2}.

(3) If |3"A| = 3k — 5, then A =[0,k] \ {4}.
Proof. 1f |2"(A")| = 2(k — 1) — 1, then by Theorem 1.8 (2), we have

A= {a(); a2,0a3, .. ., ak—l} = [07 k] \ {‘T,y}v

where {z,y} is one of the sets {1,2}, {k—2,k—1}, {2,3}, {k—3,k—2}, {1,3},
{kfgkal}a {174}7 {k747k71}a {17k71}7 {17]672}’ {27k71}7 {27]672}’
and {i,k} with 3 < i < k — 4. Therefore A = A’ U {a1} with ay > 2. Now,
consider the following cases.

If {x,y} is one of the sets {k—2,k—1}, {2,3}, {k—3,k—2}, {k—3,k—1},
{k—4,k—1}, {2,k—1}, {2,k —2}, and {i, k} where 3 < i < k—4, then ag = 1,
which is a contradiction.

If {x,y} = {1, 3}, then a; = 1. It follows that A = {0,1,2}U[4, k]. Therefore
3"A = {3} U[5,3k — 3]. So [3"A4| = 3k — 6.

If {z,y} = {1,4}, then a1 = 1. Tt follows that A = {0,1,2,3} U [5,k].
Therefore 3" A = [3,3k — 3]. So |[3"A| = 3k — 5.

If {z,y} = {1,k — 1}, then a; = 1. It follows that A = [0,k — 2] U {k}.
Therefore 3" A = [3,3k — 5]. So |3"A| =3k — 7.
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If {x,y} = {1,k — 2}, then a; = 1. It follows that A = [0,k —3]U{k —1,k}.
Therefore 3" A = [3,3k — 4]. So |3"A| = 3k — 6.

If {x,y} = {1,2}, then a; € {1,2}. It follows that A = {0,a1} U [3,k].
Therefore

ghg J &3k =3 ifar=1
C ) [5,3k—3] ifa; =2

So

3k—6 ifa;=1
37 A = L
3k—7 ifa =2 0

Lemma 3.3. Let k > 12 and A = {ag, a1, ...,ak—1} be a finite set of k integers
such that 0 = ag < a1 < -+ < ag—1. Let A" = A\ {a1}, d(A") = 1, and
|2MA'| = 2(k —1). Then
|3"A| € {3k — 6,3k — 5,3k — 4,3k — 3,3k — 2}.
Moreover, the following hold.
(1) If |3"A| = 3k — 6, then A = [0,k + 1]\ {x,y}, where {z,y} is one of
the sets {1,2}, {1,k}, and {k — 1,k}.
(2) If |3"A| = 3k — 5, then A = [0,k + 1]\ {z,y}, where {z,y} is one of
the sets {1,3}, {1,4}, {2,k}, {1,k — 1}, {3,k}, {k—2,k}, {k — 3,k},
and {i,k + 1} where 5 <i <k —3.
(3) If |3"A| = 3k —4, then A =10,k+1])\ {z,y}, where {z,y} is one of the
sets {2,3}, {2,4}, {3,4}, {1,5}, {2,5}, {2,k—1}, {1,6}, {k—2,k—1},
{3,k — 1}, and {4,k}.
(4) If |3"A| = 3k — 3, then A = [0,k + 1]\ {z,y}, where {z,y} is one of
the sets {2,6}, {3,5}, and {4,k — 1}.
(5) If |3"A| = 3k — 2, then A= [0,k + 1]\ {4,6}.

Proof. 1f 2" A’| = 2(k — 1), then by Theorem 1.8 (3), A’ = [0,k + 1]\ {z,y, 2},
where {x,y, z} is one of the sets {3,4,k+ 1}, {k—4,k—3,k+1}, {2,4,k+ 1},
(k—4,k—2k+1}, {2,5,k+1}, {k—5,k—2,k+1}, {1,2,3}, {k—2,k—1,k},
(23,4, {k— 3,k — 2,k — 1}, {1,2,4}, {k -3,k — 1,k}, {1,2,k}, {1,k — 1.k},
{17374}7 {k_3ak_2vk}a {17275}7 {k_4ak_1vk}a {1a27k_1}’ {27k_17k}a
(2,3, k—1}, {2,k—2,k—1}, {1,2,6}, {k—5,k—1,k}, {2,3,k}, {1, k—2,k—1},
(1,3,5), {k—4,k—2,k}, {1,3,k—1}, {2, k—2,k}, {1, 3, k}, {1,k—2,k}, {1,4,6),
{k—5,k—-3k}, {1,4,k -1}, {2,k —3,k}, {1,4,k}, {1,k — 3,k}, {i,75,k+ 1},
where i € {1,2} withi+4 < j <k —3,and {i,j,k+ 1}, where 3 <i<j—4
with j € {k — 2,k — 1}. Therefore A = A’ U {a1} with az > 2. Now, consider
the following cases.

(1) {z,y, 2} is one of the sets {3,4,k+ 1}, {k—4,k—3,k+ 1}, {2,4,k+ 1},

{k—4,k—2k+1},{2,5,k+1}, {k—5,k—2,k+1}, {k—2,k—1,k}, {2,3,4},
{k=3,k—2,k—1}, {k—3,k—1,k}, {k—3,k—2,k}, {k—4,k—1,k}, {2, k—1,k},
{2,3,k—1}, {2, k=2, k—1}, {k—5,k—1,k}, {2,3,k}, {k—4, k—2,k}, {2, k—2, k}
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{k—5,k—=3,k}, {2,k—3,k}, {2,j,k+1} where 6 < j < k—3,and {i,j,k+1}
where 3 < i < j—4 with j € {k—1,k—2}, then az = 1, which is a contradiction.
(2) If {x,y, 2z} = {1,2,3}, then ay € {1,2,3}. It follows that
{0,1}U[4,k+1] ifa; =1
A={{0,2} U4, k+1] ifa; =2
{0} U3,k +1] if a; = 3.

Therefore
[5,3k] ifa; =1
3NA=1<1[6,3k] ifa; =2
[7,3k] ifay =3.
So

3k—4 ifa;=1
3"A| ={3k—5 ifa; =2
3k—6 ifa; =3.

(3) If {z,y, 2} = {1,2,4}, then ay € {1,2}. It follows that
~J{0,1,3yU Bk +1] ifar =1
~1{0,2,3} U5,k +1] ifa; =2

Therefore
g JUI63K ey =1
{5 U7, 3k] ifap =2

k—4 ifa;=1
304 = 43 na
3k—5 ifa; =2.

(4) It {z,y, 2} = {1,2, k}, then a; € {1,2}. It follows that
{0, 1 UBE—-1JU{k+1} ifay =1
{0 uU2k—1u{k+1}  ifa =2

Therefore

ghg S4Bk =2 ifar =1
) [5,3k—2] ifa; =2

3k—6 ifa =2

(5) If {x,y,z} = {1,k — 1,k}, then a; = 1. It follows that A = [0,k — 2] U
{k + 1}. Therefore, 3" A = [3,3k — 4] and |3 A| = 3k — 6.

(6) If {x,y, 2} = {1,3,4}, then a; = 1. Tt follows that A = {0, 1,2}U[5, k+1].
Therefore 3" A = {3} U [6,3k] and |3"A| = 3k — 4.

|3,\A|:{3k—5 if ay = 1
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(7) If {z,y,2} = {1,2,5}, then ay € {1,2}. It follows that

C[{0,1,3,4} U6,k +1] ifa; =1
©140,2,3,4}U[6,k+1] ifa; = 2.
Therefore
A — {{4,5}U[7,3k] if a; =1
[5, 3k] if a; = 2.
So
|37 A| = 3k — 4.
(8) If {z,y, 2} = {1,2,k — 1}, then a1 € {1,2}. It follows that
{0,1}U[3,k —2JU{k,k+1} ifa; =1
{0} U2,k —2)U{k,k+ 1} if a; = 2.

Therefore
- [4,3k—1] ifa; =1
[5,3k —1] ifa; =2.

k—4 ifa; =1
ST S
3k—5 ifa; =2.

(9) If {x,y, 2} = {1,2,6}, then a; € {1,2}. It follows that

{0,1,3,4,5) U7, k+1] ifa; =1
{0,2,3,4,5} U7, k+1] ifay =2

Therefore

gn g J[3K) ifar=1
[5,3k] if a; = 2.

- ifa; =1
|3AA|: 3k—3 ?al
3k—4 ifa; =2.

(10) If {z,y,2} = {1,k — 2,k — 1}, then a; = 1. It follows that A =
[0,k — 3] U{k, k + 1} Therefore 3" A = [3,3k — 2| and [3"A4| = 3k — 4.
(11) If {z,y, 2} = {1,3,5}, then a; = 1. It follows that A = {0,1,2,4} U

[6,k + 1]. Therefore 3"A = {3} U[5,3k] and |3"A| = 3k — 3.

(12) If {z,y,2z} = {1,3,k — 1}, then a; = 1. It follows that A = {0,1,2} U
4,k —2]U{k,k+ 1}. Therefore 3"A = {3} U[5,3k — 1] and |3"A| = 3k — 4.

(13) If {x,y, 2} = {1,3, k}, then a; = 1. It follows that A = {0,1,2} U[4,k—
1JU{k + 1}. Therefore 3" A = {3} U [5,3k — 2] and |3"A| = 3k — 5.

(14) If {z,y, 2} = {1,k — 2, k}, then a; = 1. It follows that A = [0,k — 3] U

{k — 1,k + 1}. Therefore 3" A = [3,3k — 3] and |3"A| = 3k — 5.

(15) If {z,y, 2z} = {1,4,6}, then a; = 1. Tt follows that A = {0,1,2,3,5} U

[7,k + 1]. Therefore 3" A = [3,3k] and 3" A| = 3k — 2.
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16) If {z,y,z} = {1,4,k — 1}, then a; = 1. Tt follows that A = {0,1,2,3} U
[5,k — 2] U{k,k + 1}. Therefore 3" A = [3,3k — 1] and |3"A| = 3k — 3.

(17) If {z,y,2} = {1,4,k}, then a; = 1. It follows that A = {0,1,2,3} U
[5,k — 1] U {k + 1}. Therefore 3" A = [3,3k — 2] and |3 A| = 3k — 4.

(18) If {z,y, 2} = {1,k — 3, k}, then a; = 1. It follows that A = [0,k — 4] U
{k—2,k—1,k+1}. Therefore 3" A = [3,3k —4]U{3k — 2} and |3"A| = 3k —5.

(19) If {z,y, 2} = {1,4,k + 1}, where 5 < j < k — 3, then a; = 1. Tt follows
that A = [0,j—1]U[j+1, k]. Therefore 3" A = [3,3k—3] and [3" A| = 3k—5. O

Lemma 3.4. Let k > 8 and A = {ap,a1,...,ax_1} be a finite set of k integers

such that 0 = ap < a1 < «++ < ap—1. Let A" = A\ {a1} and d(A") = 1. If

I3MA| > 3k — 8, then |20 A/ > 2(k — 1) — 1.

Proof. Clearly ag > 2. Let [2(A4")| < 2(k — 1) — 2. By Theorem 1.3, we have
127 (A" > 2(k — 1) — 3.

Therefore 2(k — 1) — 3 < [2"(A")| < 2(k — 1) — 2. Consider the following cases.

(1) If |2"(A")| = 2(k — 1) — 3, then by Theorem 1.3, A’ = [0,k — 2]. This
gives ag = 1, which is a contradiction. Therefore |2 (A")| # 2(k — 1) — 3.

(2) If |27 (A")| = 2(k — 1) — 2, then by Theorem 1.8, A’ = [0,k — 1] \ {z},
where x € {1,2,k — 3,k —2}. If x € {2,k — 3,k — 2}, then as = 1, which is a
contradiction. If x = 1, then as = 2 and a; = 1. This gives A = [0,k — 1] and
|3" A| = 3k —8, which is also a contradiction. Therefore [2"(A")| # 2(k—1) —2.
Hence |2"A’| > 2(k — 1) — 1. This completes the proof of the lemma. O

Lemma 3.5. Let k > 10 and A be a finite set of k integers with min(A) = 0
and d(A) = 1. Then |3"A| = 3k — 7 if and only if A = [0,k] \ {z}, where
xe{l,k—1}.
Proof. Let A =10,k]\ {«}, where z € {1,k — 1}. Then
g JB3k=3 ifa=1
3,3k —5 ifx=k—L

So
|3"A| =3k — 7.
Let A ={ap,a1,...,ax—1} be a set of k integers such that 0 = ag < a3 < -+ <
ag—1, d(A) =1 and [3"A] = 3k — 7. Then ay > 2. Set A’ = A\ {a1} and
S ={a;+ak_2+ar_1:1€[2,k—3]} Note that 2" A’ + a1 and S are disjoint
subsets of 3" A because max(2" A’ 4+ a1) < min(S).
Claim 1: d(4') =1.
If d(A’) > 1, then Lemma 3.1 implies that
13N A| > 5k — 16 > 3k — T.
Therefore d(A’) = 1.
Claim 2: [2"(A)] <2(k—-1)—1.
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If |27 A’ + a1| = |27 (A")] > 2(k — 1), then
137 Al > 2N A) +ag| + S| >2(k—1)+k—4=3k—6>3k—T.
Therefore, |2"(A’)| < 2(k — 1) — 1. Using Lemma 3.4, we get [2"(A")| = 2(k —
1) — 1 and again using Lemma 3.2, we get A = [0, k] \ {«}, where z € {1,k —1}.
This completes the proof of the lemma. (I

Lemma 3.6. Let k > 12 and A be a finite set of k integers with min(A) = 0
and d(A) = 1. Then |3"A| = 3k —6 if and only if A =[0,k+ 1]\ {z,y}, where
{z,y} is one of the sets {2,k + 1}, {3,k + 1}, {k -3,k + 1}, {k — 2,k + 1},
{1,2}, {k — 1,k}, and {1, k}.

Proof. It A = [0,k + 1] \ {z,y}, where {z,y} is one of the sets {2,k + 1},
{3,k +1}, {k -3,k + 1}, {k— 2,k + 1}, {1,2}, {k— 1,k}, and {1, %k}, then it
is easy to see 3" A| = 3k — 6. Now, we prove the converse part.

Let A = {ap,a1,...,ax—1} where 0 = ag < a1 < -+ < ag—1 and d(A4) =1
such that |[3"A| = 3k — 6. Then az > 2. Set A’ = A\ {a1} and S = {a; +
ak—o+ak—1 : 1 € [2,k — 3]}. Note that 2" A’ 4+ a1 and S are disjoint subsets of
3" A because max(2" A’ + a1) < min(S).

Claim 1: d(4') =1.
If d(A’) > 1, then Lemma 3.1 implies that
13" A| > 5k — 16 > 3k — 6.
Therefore d(A’) = 1.
Claim 2: [2"(4")] <2(k—1).
If |27 A" + aq| = |2 (A")] > 2(k — 1) + 1, then
I3MAl > 2" (A) + a1 +|S| > 2(k—1)+1+k—4=3k—5> 3k —6.
Therefore, [2"(A")] = |2"(A") + a1] < 2(k — 1). Using Lemma 3.4, we get
2k —1) — 1 < |2M(A")] < 2(k —1).
Now, consider the following cases.
(1) If |2"(A")| = 2(k — 1) — 1, then by Lemma 3.2, we have
A =10,k]\ {z}, where z € {2,3,k — 2}.
Since |3"A| = |3"(k — A)| = 3k — 6. Therefore A = [0, k] \ {2}, where
ze{2,3,k—3,k—2).
(2) If |2(A")] = 2(k — 1), then by Lemma 3.3, we have
A=[0,k+1]\{z,y},
where {x,y} is one of the sets {1,2}, {1,k}, and {k — 1, k}.
Thus, |3"A| = 3k — 6 if and only if A = [0,k + 1]\ {z,y}, where {z,y} is one
of the sets {2,k+1}, {3,k +1}, {k—3,k+1}, {k—2,k+1}, {1,2}, {k—1,k},
and {1, k}. This completes the proof of the lemma. O
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Proof of Theorem 1.9. Combining Lemma 3.5 and Lemma 3.6, we get Theorem
1.9. O

Lemma 3.7. Let k > 10 and A = {ag, a1, ...,ar—1} be a finite set of k integers
such that 0 = ag < a1 < -+ < ag—1 and d(A) = 1. Let A’ = A\ {a1}. If
[4NA| > 4k — 15, then |37 A'| > 3(k — 1) — 6.

Proof. The proof is similar to the proof of Lemma 3.4. So, we omit the details.
O

Proof of Theorem 1.10. Let A = {ag,a1,...,a5—1}, where0 =ag < a1 < -+- <
ar—1 and d(A) = 1. Then as > 2. Set A’ = A\ {a1} and S = {a; + ap—3 +
ax_o+ap_1:1 € [2,k —4]}. Note that 3" A’ 4+ a1 and S are disjoint subsets of
4" A because max(3" A’ + a1) < min(S).
Claim 1: d(4')=1.

If d(A’) > 1, then Lemma 3.1 implies that

4NA| > Th — 30 > 4k — 14.

Therefore d(A") = 1.
Claim 2: [3"(A4')| <3(k—1)—6.

If |37 A’ + a1| = [3M(A")] > 3(k — 1) — 5, then

[47A| > 3M(A) +ar| + S| > 3(k—1) =5+ k —5 =4k — 13 > 4k — 14.
Therefore, |3"(A")] = |3"(A’) 4+ a1| < 3(k — 1) — 6. Using Lemma 3.7, we have
I3"(A")| = 3(k — 1) — 6. Therefore, by Theorem 1.9, A’ = [0, k] \ {x,y}, where
{z,y} is one of the sets {2, k}, {3,k}, {k—4,k}, {k—3,k}, {1,2}, {k—2,k—1}
and {1,k — 1}. Now consider the following cases.

(i) If {z,y} is one of the sets {2,k}, {3,k}, {k — 4,k}, {k — 3,k}, and
{k — 2,k — 1}, then as = 1, which is a contradiction.

(ii) If {z,y} = {1,2}, then ay € {1,2}. It follows that

{0, 13U [3,K] ifay =1,
{0 U2,k ifap =2

Therefore

g Bk =6 ifa =1
9,4k — 6] ifa; = 2.

4k — 14 if aq = 2.
(iii) If {x,y} = {1,k — 1}, then a; = 1. It follows that A = [0,k — 2] U {k}.
Therefore 4" A = [6,4k — 9]. So |[4"A| = 4k — 14.
Hence, [4"A| = 4k — 14 if and only if A = [0,k] \ {z}, where z € {1,k — 1}.
This completes the proof of the theorem. (I

|4AA|:{4k_13 if ay =1
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4. Conclusion

On the basis of Theorem 1.8, Theorem 1.9, and Theorem 1.10, we propose
Conjecture 4.1.

Conjecture 4.1. Let k be a large positive integer and h be a positive integer
with 2 < h < k — 2. Let A be a finite set of k& nonnegative integers with
min(A) =0 and d(A) = 1.

(a) If [BNA| = hk — h? + 2, then A C [0, K].
(b) If B A| = hk — h? + 3, then A C [0,k + 1].
(c) Tf [N A| = hk — h? + 4, then A C [0,k + 2].

It is seen in this paper that (a) is true for h = 2,3, 4, (b) is true for h = 2,3,
and (c) is true for h = 2 due to Theorem 1.8, Theorem 1.9, and Theorem 1.10,
respectively.
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