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1w-SPLIT MODULES

XIAOYING WU

ABSTRACT. In this paper, the notions of iw-split modules and iw-split
dimension are introduced, and some equivalent characterizations of these
notions are given. With the help of iw-split modules and iw-split di-
mensions, new characterizations of DW rings, semi-simple rings, and
Dedekind domains are given. More precisely, it is shown that R is a
DW ring if and only if every iw-split module is an injective module; while
R is a semi-simple ring if and only if every R-module is an {w-split mod-
ule; and R is a Dedekind domain if and only if every factor module of an
iw-split module is jw-split.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity 1 and
rIMN be the category of R-modules. Recall from [4] that an ideal J of R is
called a Glaz-Vasconcelos ideal (a GV-ideal for short) if .J is finitely generated
and the natural homomorphism ¢ : R — J* = Hompg(J, R) is an isomorphism,
denoted by J € GV(R). Let M be an R-module. Define

torgv(M) ={x € M | Jx =0 for some J € GV(R)}.

Thus torgy (M) is a submodule of M. One calls M GV-torsion (resp., GV-
torsionfree) if torqy (M) = M (resp., torgy(M) = 0). A GV-torsionfree mod-
ule M is called a w-module if Exth(R/J, M) = 0 for all J € GV(R). For any
GV-torsionfree module M,

My,={x € E(M)|Jx C M for some J € GV(R)}

is a w-submodule of F(M) containing M and is called the w-envelope of M,
where E(M) denotes the injective envelope of M. It is clear that a GV-
torsionfree module M is a w-module if and only if M,, = M. Let M and N be
R-modules and let f: M — N be a homomorphism (see [4]). Then, f is called
a w-monomorphism (resp., a w-epimorphism, a w-isomorphism) if fu, : My —
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Ny, is a monomorphism (resp., an epimorphism, an isomorphism) for any max-
imal w-ideal m of R. A sequence A — B — C of R-modules and homomor-
phisms is called w-exact if the sequence A, — By, — Cp, is exact for any maxi-
mal w-ideal m of R. Let M be an R-module and set L(M) = (M /torgy (M)) .
Then M is said to be w-projective if Exty(L(M), N) is a GV-torsion module
for any torsion-free w-module N. From the definition, it is clear that projective
modules and GV-torsion modules are w-projective. An R-module F is said to
be w-injective if for any w-exact sequence 0 - A — B — C' — 0, the induced
sequence 0 — Homp(C, L(E)) — Hompg(B, L(E)) — Hompg(A, L(E)) — 0 is
also w-exact. For unexplained terminologies and notations, we refer to [4].

It is well known that semi-simple rings can be characterized by either pro-
jective modules or injective modules, i.e., R is a semi-simple ring if and only
if every R-module is a projective module, if and only if every R-module is an
injective module; see for example [4, Theorem 7).

Moreover, semi-simple rings are characterized via w-operation. Namely, R
is a semi-simple ring if and only if every R-module is a w-projective module
(see Fanggui Wang and Hwankoo Kim [3, Theorem 3.15]), and if and only if
every R-module is a w-injective module (see Almahdi and Assaad [1, Theorem
2.12]).

Recently, in 2020, Fanggui Wang and Lei Qiao introduced the concepts of
w-split short exact sequences and w-split modules. A short exact sequence

of R-modules £ : 0 — A 5B % ¢ = 0is said to be w-split if there exist
J = (dy,...,d,) € GV(R) and hy,...,h, € Homg(C, B) such that ghy =
dile, k = 1,...,n. Equivalently, there exist q1,...,q, € Hompg(B, A) such
that g f = dila, k=1,...,n. An R-module M is said to be w-split if there
is a w-split short exact sequence of R-modules 0 — ker(g) — F % M — 0,
where F'is a projective module, equivalently, Ext}%(M , N) is GV-torsion for all
R-modules N (see [6]). Wang and Qiao showed that R is semi-simple if and
only if every R-module is a w-split module. They choose to define “w-split”
in the sense of projectivity. A natural question is whether an alternative kind
of “w-split” corresponding to injectivity may also lead to a characterization of
semi-simple rings.

In this paper, we introduce “w-split” modules in the sense of injectivity,
which we call sw-split modules. After showing some equivalent descriptions of
iw-split modules, we give a new characterization of semi-simple rings as: R is
a semi-simple ring if and only if every R-module is jw-split. Additionally, the
notion of iw-split dimension is introduced. With the help of iw-split modules
and jw-split dimension, new characterizations of DW rings and Dedekind do-
mains are given. More precisely, it is shown that R is a DW ring if and only if
every tw-split module is an injective module; while R is a Dedekind domain if
and only if every factor module of an iw-split module is iw-split.
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2. tw-split modules and tw-split dimension
We begin this section by introducing the concept of iw-split modules.

Definition 2.1. An R-module N is said to be iw-split if there is a w-split
short exact sequence of R-modules

0>N—->F—->C—=0
with E injective.

According to the definition of {w-split modules, it is clear that an injective
module is tw-split. The converse is not necessarily true (see Example 2.12).

Proposition 2.2. Let{:0— A LB&5C S 0bea w-split exact sequence, J
be a GV-ideal associated with . Let M be an R-module. Then:
(1) Ja C Im(gs) for any a € Hompr(M,C). Hence JHomp(M,C) C
Im(g.).
(2) If Extp(M, B) is a GV-torsion module, then Extp(M,A) is a GV-
torsion module.
(3) If Exth(M,B) =0, then JExth(M, A) = 0, that is, Exty (M, A) is an
R/ J-module.
Proof. Consider the induced exact sequence
0 — Hompg(M, A) — Homg (M, B) 23 Homg (M, C) — Exty(M, A) — Exty (M, B).

(1) Since o« € Homp (M, C'), we have aq, € Homp(M, B) and dpo = g« (oqy).
So Ja C Im(g.).

(2) Set L := Cok(g.). It is obtained from (1) that L is an R/J-module, and
thus it is a GV-torsion module. It follows from the exact sequence 0 — L —
Exty (M, A) — Extp(M, B) that Exty(M, A) is a GV-torsion module.

(3) When Ext (M, B) = 0, we get that Extp(M, A) = Cok(g,) is an R/J-
module. O

Theorem 2.3. The following statements are equivalent for an R-module N.
(1) N is an iw-split module.

2) Exty(M, N) is GV-torsion for all R-modules M.

3) Ext’ (M, N) is GV-torsion for all R-modules M and for all k > 1.

4) If0 > A— B — C — 0 is an exact sequence, then the sequence

0 — Homp(C,N) — Homg(B,N) = Homg(A,N) = 0

18 a w-exact sequence.

(5) Ewvery exact sequence of the formn:0— N — B — C — 0 is w-split.

(6) For any R-module monomorphism f : A — B and for each homo-
morphism « : A — N, there exist J = (dy,...,d,) € GV(R) and
homomorphisms qx : B — N such that qif = dya, k=1,... n.

(7) There exists J € GV(R) such that Exty (M, N) is an R/J-module for
any R-module M.
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Proof. (1)=(2) Let £ : 0 - N LESC 5 0bea w-split exact sequence
of R-modules with E injective. There exist J = (dy,...,d,) € GV(R) and
homomorphisms hy € Homg(C, E) such that ghy = dxlc, k = 1,...,n. Let
a € Hompg(M,C). Define 8y = hga. Then gB; = ghga = dra, k = 1,...,n,
so Ja C Im(g.). Therefore g, is a w-epimorphism. Thus

0 — Homg (M, N) — Homg(M, E) £ Homg(M,C) — 0
is a w-exact sequence. Since
0 — Homg(M, N) — Homgr (M, E) — Homg(M,C) — Ext}%(M, N)—=0

is an exact sequence, it follows that Exth (M, N) is GV-torsion.

(2)=-(4) This is trivial.

(4)=(6) Since f* : Homp(B, N) — Hompg(A, N) is a w-epimorphism, then
Homp(A, N)/Im(f*) is GV-torsion, so there exist J = (dy,...,d,) € GV(R)
such that Jo C Im(f*). Thus there are g, € Hompg(B, N) such that ¢ f = dia,
k=1,...,n.

(6)=-(5) This follows from setting A = N in (6).

(5)=-(1) This follows easily from the definition of jw-split modules

(2)=(3) Let 0 > A — P — M — 0 be an exact sequence with P projective
and k > 1. Then Exth (M, N) = Exth'(C, N). By using induction on k, we
see that Ext® (M, N) is GV-torsion.

(3)=(2) Clear.

(1)=(7) Since N is an jw-split module, then there is a w-split exact sequence
£:0—> N — E — C — 0, where E is an injective module. Let J be a GV-ideal
associated with &. By Proposition 2.2(3), Exty(M, N) is an R/J-module for
any R-module M.

(7)=(2) Clear. O

Corollary 2.4. (1) Let N be injective. Then N is an iw-split module.
(2) Let 0 = A — B — C — 0 be an exact sequence with A an iw-split
module. Then B is an iw-split module if and only if C is an iw-split
module.
(3) Let M and N be any R-modules. Then M @ N is an iw-split module
if and only if M and N are iw-split modules. Therefore every direct
summand of an iw-split module is iw-split.

Proof. (1) Clear.
(2) Since 0 - A — B — C' — 0 be an exact sequence with A an iw-split
module, then for any R-module M, there is an exact sequence

Extp(M, A) — Exty(M, B) — Exty(M,C) — ExtR(M, A).

Since A is an jw-split module, by Theorem 2.3, we see that Extp (M, A) and
Ext%(M, A) are GV-torsion. Therefore Exth (M, B) is GV-torsion if and only
if Exty(M,C) is GV-torsion. By Theorem 2.3, we see that B is an iw-split
module if and only if C' is an {w-split module.
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(3) Let K be an R-module. Since
Exty(K, M @ N) = Extp(K, M) P Extp(K, N),

then Extg (K, M @ N) is GV-torsion if and only if Extp, (K, M) and Exth(K, N)
are GV-torsion, so M @ N is an iw-split module if and only if M and N are
iw-split modules. O

The concept of w-injective modules is introduced by Fanggui Wang and
Hwankoo Kim in [2] and some equivalent characterizations of w-injective mod-
ules are given. An R-module F is said to be w-injective if

0 — Hompg(C, L(E)) — Homg(B, L(E)) — Homg(A, L(E)) = 0

is w-exact for any w-exact sequence 0 - A — B — C — 0. In [2], it is also
shown that a w-module E is w-injective if and only if Extp (M, E) is GV-torsion
for all R-modules M. Hence we have the following:

Corollary 2.5. Let N be a w-module. Then N is a w-injective module if and
only if N is an tw-split module.

Recall from [4] that an R-module D is said to be a GV-divisible module
if JD = D for any J € GV(R), equivalently, (R/J)Q@rD = 0. By the
introduction of [7], we can easily get the following lemma.

Lemma 2.6. (1) Let E be an injective module. Then E is a GV-divisible

module.

(2) Let f : M — N be an epimorphism and M be a GV-divisible module.
Then N is a G'V-divisible module.

(3) Let {D;} be a family of GV-divisible modules. Then @, D; is a GV-
divisible module.

(4) Let 0 = A — B — C — 0 be an exact sequence. If A and C are
G V-divisible modules, then B is a GV-divisible module.

Proposition 2.7. Let N be an R-module.

(1) If D1 and Dy are GV-divisible submodules of N, then Dy + Dy is a
G V-divisible submodule of N.

(2) If {D;} is an ascending chain on GV-divisible submodules of N, then
D =, D; is a GV-divisible submodule of N.

(3) N has the largest GV-divisible submodule.

Proof. (1) By the epimorphism f : D; @ Dy — Dy + D2 and Lemma 2.6, we
can get the conclusion.

(2) Let x € D and J € GV(R). Then there exists a subscript ¢ such that
r€D,;. Thusx e JD; C JD. Hence D = JD.

(3) By Zorn’s lemma, N has a maximal GV-divisible submodule. By Propo-
sition 2.7(1), we see that N has only one maximal GV-divisible submodule.
Therefore the maximal GV-divisible submodule is the largest GV-divisible sub-
module. (|
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In order to get the Theorem 2.10 and Example 2.11, next, we will introduce
the concept of GV-reduced module.

Definition 2.8. Let N be an R-module. If the largest GV-divisible submodule
of N is 0, then N is said to be a GV-reduced module.

Proposition 2.9. (1) FEvery submodule of a GV-reduced module is still
G V-reduced.

(2) An R-module N is a GV-reduced module if and only if Homg(D,N) =
0 for any GV-divisible module D.

(3) Let D be the largest GV-divisible submodule of N. Then N/D is a
G V-reduced module.

(4) Let {N;} be a family of R-modules. Then [], N; is a GV-reduced module
if and only if every N; is a GV-reduced module, if and only if @, N;
is a GV-reduced module.

(5) Let J € GV(R) and N be an R/J-module. Then N is a GV-reduced
module.

(6) Let J € GV(R) and N = @

Proof. (1) Clear.

(2) Let N be a GV-reduced module, D be a GV-divisible module and f :
D — N be a homomorphism. By Lemma 2.6, f(D) is a GV-divisible submodule
of N, thus f(D) =0, that is f = 0. Therefore Homg(D, N) = 0.

Conversely, suppose that D is a non-zero GV-divisible submodule of N,
then the inclusion mapping A : D — N is a non-zero mapping, which is a
contradiction. Thus D = 0. Hence N is a GV-reduced module.

(3) Let D be the largest GV-divisible submodule of N and Ny be a sub-
module of N which contains D. Then 0 — D — Ny — Ny/D — 0 is an exact
sequence. If No/D is a GV-divisible module, by Lemma 2.6, we can get that
Ny is a GV-divisible submodule of N. Thus Ny = D. Therefore N/D is a
GV-reduced module.

(4) By Proposition 2.9(2), we can get the conclusion.

(5) Let D be a GV-divisible submodule of N. Then D = JD = 0. Therefore
N is a GV-reduced module.

(6) By Proposition 2.9(5), every R/J™ is a GV-reduced module. By Propo-
sition 2.9(4), we see that N is a GV-reduced module. O

R/J™. Then N is a GV-reduced module.

m

Theorem 2.10. Let N be an R-module.
(1) If there exists J € GV(R) such that JN = 0, then N is an iw-split
module, that is, every R/J-module is iw-split.
(2) Let N be a GV-reduced module. If N is an iw-split module, then there
exists J € GV(R) such that JN = 0.

Proof. (1) Since JN = 0, then N is an R/J-module. So Exth(M,N) is an
R/J-module for all R-modules M. By Theorem 2.3, we see that N is an iw-
split module.
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(2) Let £ : 0 - N - E — C — 0 be a w-split exact sequence of R-
modules with F injective. By Lemma 2.6, E is a GV-divisible module. By
Proposition 2.9 and N is a GV-reduced module, we have Homg(E, N) = 0. So
0 — Homp(N, N) — Extk(C, N) is an exact sequence. By Theorem 2.3, there
exists J € GV(R) such that Extk(C, N) is an R/.J-module. Thus Homg(N, N)
is an R/J-module. Hence J 1y = 0. Therefore JN = 0. (]

According to the definitions of iw-split modules and w-injective modules, it
is clear that an fw-split module is w-injective. The converse is not necessarily
true. Next, we will give an example of a w-injective module, which is not
jw-split.

Example 2.11. Let K be a field, 2 and y be indeterminates, R = K|z, y],
I = (z,y). Then
(1) I € GV(R).
(2) Ny I™ =0
(3) Let N Moo_; R/I™. Then N is a w-injective module. However, N
is not an fw- spht module.

Proof. (1) Clear.

(2) If oo_; I™ # 0, then there exists a polynomial f € () °_, I"™ and f # 0.
Let deg(f) = s. Then f ¢ I°*T1, a contradiction. Therefore f = 0.

(3) Since N is a GV-torsion module, then N is w-injective. If N is an jw-
split module, by Theorem 2.10, there exists J € GV(R) such that JN = 0. So
J(R/I™) = (J +I™)/I™ = 0 for any m. Hence for any m, we have J C I".
By Example 2.11(2), J = 0, a contradiction. Therefore, N is not an iw-split
module. ]

Example 2.12. Let R be an unique factorization domain and u,v € R be
relatively prime. Then J = (u,v) € GV(R). By Theorem 2.10, we can get R/.J
is tw-split. If J # R, then R/J is not a division module, therefore R/.J is not
an injective module.

In [1], Almahdi and Assaad introduced the concept of w-split dimension of
modules. Let M be an R-module. Define w-sd(M) < n if M has a w-split
module resolution of length n. If no such finite resolution exists, then define
w-sd(M) = co. Correspondingly, in the following we will define the concept of
iw-split dimension of modules.

Definition 2.13. Let N be an R-module. If there exists an exact sequence
0O-N—-Ey— ---—FE,_1—FE,—=0,

where FEy, E1,..., E, are tw-split modules and n is the least such nonnega-
tive integer, we call jw-sdr(N) the jw-split dimension of N, and we define
iw-sdr(N) = n. If no such finite resolution exists, then we define iw-sdg(N) =
0.
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Clearly, we have iw-sdg(N) < idg(N) for all R-modules N.

The corresponding dimension of R-modules is used to measure how far away
a module is from being a certain kind of module. For example, the projective
dimension of an R-module is used to measure how far away the module is from
being projective, and the injective dimension of an R-module is used to measure
how far away the module is from being injective. So the iw-split dimension of
R-modules measures how far away a module is from being an iw-split module.
Hence we can get the following.

Example 2.14. Let N be an iw-split module. Then 0 = N - N — 0is a
resolution of N, thus iw-sdr(N) = 0. Conversely, if sw-sdr(N) = 0, then N is
jw-split.

Proposition 2.15. The following statements are equivalent for an R-module
N and a nonnegative integer n.

(1) iw-sdr(N) < n.

(2) Ext® (M, N) is GV-torsion for all R-modules M.

(3) Let 0 > N - Ey —» -+ = E,_1 — E, — 0 be an exact sequence,

where Ey, ..., E,_1 are iw-split modules. Then E, is iw-split.
(4) Let 0 = N - Ey —» -+ = E,_1 — E, — 0 be an exact sequence,
where Ey, ..., E,_1 are injective modules. Then E, s tw-split.

Proof. (1)=(2) By the definition of iw-split dimension, there exists an exact
sequence
0O-N—-Ey— - -—FE,1—E,—0,

where Eg, E1,..., E, are iw-split modules. Thus there is an exact sequence
Ext(M, E,) — Ext}t (M, N) — Ext™ (M, Ey).

Since Ey and F,, are iw-split modules, by Theorem 2.3, we see that Ext’: (M, Eo)
and Exts(M, E,) are GV-torsion. Therefore Extg"l(M, N) is GV-torsion.
(2)=-(3) Suppose that (2) holds. Thus there exists an exact sequence

Extp(M, E,_1) — Exth(M, E,) — Ext®(M, N)

for all R-modules M. Since Extk(M, E,_;) and Ext®(M, N) are GV-torsion,
then Extp(M, E,,) is GV-torsion. By Theorem 2.3, E,, is iw-split.
(3)=(4)=(1) This follows from Corollary 2.4(1). O

Proposition 2.16. Let 0 - A — B — C — 0 be an exact sequence. Then:
(1) Ifiw-sdr(B) < iw-sdg(A), then iw-sdr(C) = iw-sdg(A) — 1.
(2) If iw-sdr(A) < iw-sdr(B), then iw-sdr(B) = iw-sdg(C).

Proof. Let M be an R-module and k > 0.
(1) This is obtained directly from the exact sequence

Exth (M, B) — Exth (M, C) — Ext® (M, A) — Extit (M, B).
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(2) This follows from the exact sequence
Exth (M, A) — Exth (M, B) — Ext} (M, C) — Exth™ (M, A). O

Recall that an R-module M is called a w-flat module if the induced map
1R f: M@rA— MQpgB is a w-monomorphism for any w-monomorphism
f A — B. The concept of w-flat dimension was introduced by Fanggui Wang
and Lei Qiao in [5]. Let M be an R-module. Recall that w-fd(M) < n if there

exists an exact sequence
0—=F,—-F,-1—--—=>Fp—-M-—=0,

where Fy,, F,,_1,...,Fy are w-flat. Tt is clear that w-fd(M) < w-sd(M) <
pdg(M). Some equivalent characterizations of w-split dimension are given in
[1]. For example, let M be an R-module and n be a nonnegative integer. Then
w-sd(M) < n if and only if Ext}s"™ (M, N) is GV-torsion for all R-modules N,
if and only if K, is w-split whenever there is an exact sequence 0 — K,, —
P,1— > Py— M — 0with Py, ..., P,_1 projective. A ring R is called a
DW ring if every ideal of R is a w-ideal. Fanggui Wang and Hwankoo Kim in [3]
show that if R is a DW ring, then the class of projective R-modules, the class
of w-split R-modules, and the class of w-projective R-modules are equivalent.
Almahdi and Assaad in [1, Proposition 3.4] built on this in the following way.
A ring R is a DW ring if and only if pdz(M) = w-sd(R) for all R-modules M,
if and only if fdg(M) = w-fd(M) for all R-modules M.

In 2021, Almahdi and Assaad used w-split modules to give a characterization
of DW rings. For example, let R be a ring. Then R is a DW ring if and only
if every w-projective R-module is projective, if and only if every w-split R-
module is projective, if and only if every w-flat R-module is flat. Based on this
use of w-split modules to characterize DW rings, the natural question arises
whether w-split modules can similarly characterize DW rings.

Theorem 2.17. Let R be a ring. Then the following statements are equivalent.
(1) Fwvery w-injective R-module is injective.
(2) Ewvery iw-split R-module is injective.
(3) R is a DW ring.

Proof. (1)=(2) By the definitions of w-injective modules and iw-split modules,
we can get the conclusion.

(2)=(3) Let J € GV(R) and N = J/J?. Then JN = 0. According to
Theorem 2.10, N is an jw-split module. Now let f : J — N be the natural
homomorphism, so f(a) = a, a € J. By (2), N is an injective module. Thus
there exists a homomorphism g : R — N such that f(a) = g(a) for all @ € J.
Denoted by g(1) = b for all b € J, since b = f(b) = g(b) = bg(1) = b2, so
g(1) = b =0, therefore g = 0. Since f is an epimorphism, it follows that g is
also an epimorphism. Hence N = 0, that is, J = J2. By [4, Theorem 1.8.22],
J can be generated by an idempotent element, thus J is a projective ideal.
Therefore J is a w-module, so J = J,, = R. Hence R is a DW ring.
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(3)=(1) Clear. O
Corollary 2.18. Let R be a DW ring and N be an R-module. Then
iw-sdr(N) = w-idg(N).
Proof. This is obtained directly from Corollary 2.5. ]

3. Characterizations of semi-simple rings and Dedekind domains

In the following, we will discuss the relationships between w-split dimension
of modules and 7w-split dimension of modules.

Theorem 3.1. The following statements are equivalent for a ring R and a
nonnegative integer n.

(1) w-sd(M) < n for all R-modules M.

(2) iw-sd(N) <n for all R-modules N.

(3) Ext% (M, N) is GV-torsion for all R-modules M,N and for all k > n.
(4) Ext'y™ (M, N) is GV-torsion for all R-modules M, N.

Proof. (1)=(2) This follows from [1, Proposition 3.3] and Proposition 2.15.
(2)=(3) Since iw-sd(N) < n for all R-modules N, then there is a resolution
of an fw-split module N

0O-N—-Ey— ---—FE,_1—FE,—=0,

where Ey, F1, ..., E, are iw-split modules. Thus when k& > n, Ext’f%(M, N) =
Ext%"(M, E,,) for all R-modules M. Hence Ext’ (M, N) is GV-torsion.
(3)=-(4) This is obvious.
(4)=-(1) This follows easily from [1, Proposition 3.3]. O

The following results give new equivalent characterizations of semi-simple
rings and Dedekind domains by iw-split modules.

Theorem 3.2. The following statements are equivalent for a ring R.

(1) Fvery R-module is a w-split module.

(2) Every R-module is an iw-split module.

(3) R is a semi-simple ring.

(4) Ewvery cyclic R-module is an iw-split module.

Proof. (1)=(2) Let M be an R-module. It follows the assumption that M is
w-split, so w-sd(M) = 0. By Theorem 3.1, iw-sd(N) = 0 for all R-modules N.
Thus every R-module is an jw-split module.

(3)=(1) Let N be an R-module. Since R is a semi-simple ring, then N is
injective. According to Corollary 2.4, we can get N is iw-split, thus jw-sd(N) =
0. By Theorem 3.1, w-sd(N) = 0. It follows from the definition of w-split
dimension, N is a w-split module, so every R-module is a w-split module.

(2)=-(4) This is trivial.
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(4)=(3) Let M be a cyclic R-module and N be a cyclic torsion-free w-
module. By the hypothesis, N is iw-split, so Ext (M, N) is GV-torsion. Thus
M is w-projective. By [3, Theorem 3.15], we can get the conclusion. (I

Theorem 3.3. The following statements are equivalent for a ring R.

(1) Ewery factor module of an iw-split module is iw-split.
(2) Ewvery factor module of an injective module is iw-split.

(3) Every submodule of a w-split module is w-split.

(4) Every submodule of a projective module is w-split.

(5) R is hereditary.

Proof. (1)=(2) This is trivial.

(2)=(3) Let P be a w-split module and A be a submodule of P. Let N be any
R-module. Then there is an exact sequence 0 - N — F — C' — 0, where E is
injective. By the hypothesis, Exty(A, N) = Ext}(P/A, N) = ExtL(P/A, C) is
GV-torsion, and so A is a w-split module.

(3)=(4) This is clear.

(4)=(5) It suffices to prove that R is a DW ring. Let J € GV(R) and
R;=R. Let F =@ jcqvr) Bs and M = @ jcqv(r) /- Then F is a free R-
module, M is a submodule of F and M,, = F. It follows from the assumption
that M is w-split. By [6, Proposition 2.8], there exists I € GV(R) such that
IF C M. Therefore I C J for all J € GV(R). Especially, I C I%. So I is
generated by an idempotent element. Thus I is a projective ideal, therefore
I = R. Hence R has only one GV-ideal, that is R itself, By the definition of
DW rings, R is a DW ring.

(5)=(1) By the hypothesis, every factor module of an injective module is
injective. By Corollary 2.4, every factor module of an iw-split module is iw-
split. ([

As a consequence of the statement of Theorem 3.3, we have the following
corollary.

Corollary 3.4. Let R be an integral domain. Then every factor module of an
1w-split module is iw-split if and only if R is a Dedekind domain.
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