Bull. Korean Math. Soc. **61** (2024), No. 5, pp. 1241–1252

 $\begin{array}{l} https://doi.org/10.4134/BKMS.b230474 \\ pISSN: \ 1015-8634 \ / \ eISSN: \ 2234-3016 \end{array}$

iw-SPLIT MODULES

XIAOYING WU

ABSTRACT. In this paper, the notions of iw-split modules and iw-split dimension are introduced, and some equivalent characterizations of these notions are given. With the help of iw-split modules and iw-split dimensions, new characterizations of DW rings, semi-simple rings, and Dedekind domains are given. More precisely, it is shown that R is a DW ring if and only if every iw-split module is an injective module; while R is a semi-simple ring if and only if every R-module is an iw-split module; and R is a Dedekind domain if and only if every factor module of an iw-split module is iw-split.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity 1 and $R\mathfrak{M}$ be the category of R-modules. Recall from [4] that an ideal J of R is called a Glaz-Vasconcelos ideal (a GV-ideal for short) if J is finitely generated and the natural homomorphism $\varphi: R \to J^* = \operatorname{Hom}_R(J, R)$ is an isomorphism, denoted by $J \in \operatorname{GV}(R)$. Let M be an R-module. Define

$$tor_{GV}(M) = \{x \in M \mid Jx = 0 \text{ for some } J \in GV(R)\}.$$

Thus $\operatorname{tor}_{\mathrm{GV}}(M)$ is a submodule of M. One calls M GV-torsion (resp., GV-torsionfree) if $\operatorname{tor}_{\mathrm{GV}}(M) = M$ (resp., $\operatorname{tor}_{\mathrm{GV}}(M) = 0$). A GV-torsionfree module M is called a w-module if $\operatorname{Ext}^1_R(R/J,M) = 0$ for all $J \in \mathrm{GV}(R)$. For any GV-torsionfree module M,

$$M_w = \{x \in E(M) \mid Jx \subseteq M \text{ for some } J \in GV(R)\}$$

is a w-submodule of E(M) containing M and is called the w-envelope of M, where E(M) denotes the injective envelope of M. It is clear that a GV-torsionfree module M is a w-module if and only if $M_w = M$. Let M and N be R-modules and let $f: M \to N$ be a homomorphism (see [4]). Then, f is called a w-monomorphism (resp., a w-epimorphism, a w-isomorphism) if $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to M$

Received August 16, 2023; Revised March 4, 2024; Accepted March 25, 2024. 2020 Mathematics Subject Classification. 13D05, 13D07, 13F05.

Key words and phrases. w-split module, iw-split module, iw-split dimension, Dedekind domain.

 $N_{\mathfrak{m}}$ is a monomorphism (resp., an epimorphism, an isomorphism) for any maximal w-ideal \mathfrak{m} of R. A sequence $A \to B \to C$ of R-modules and homomorphisms is called w-exact if the sequence $A_{\mathfrak{m}} \to B_{\mathfrak{m}} \to C_{\mathfrak{m}}$ is exact for any maximal w-ideal \mathfrak{m} of R. Let M be an R-module and set $L(M) = (M/\operatorname{tor}_{\mathrm{GV}}(M))_w$. Then M is said to be w-projective if $\operatorname{Ext}^1_R(L(M),N)$ is a GV-torsion module for any torsion-free w-module N. From the definition, it is clear that projective modules and GV-torsion modules are w-projective. An R-module E is said to be w-injective if for any w-exact sequence $0 \to A \to B \to C \to 0$, the induced sequence $0 \to \operatorname{Hom}_R(C,L(E)) \to \operatorname{Hom}_R(B,L(E)) \to \operatorname{Hom}_R(A,L(E)) \to 0$ is also w-exact. For unexplained terminologies and notations, we refer to [4].

It is well known that semi-simple rings can be characterized by either projective modules or injective modules, i.e., R is a semi-simple ring if and only if every R-module is a projective module, if and only if every R-module is an injective module; see for example [4, Theorem 7].

Moreover, semi-simple rings are characterized via w-operation. Namely, R is a semi-simple ring if and only if every R-module is a w-projective module (see Fanggui Wang and Hwankoo Kim [3, Theorem 3.15]), and if and only if every R-module is a w-injective module (see Almahdi and Assaad [1, Theorem 2.12]).

Recently, in 2020, Fanggui Wang and Lei Qiao introduced the concepts of w-split short exact sequences and w-split modules. A short exact sequence of R-modules $\xi:0\to A\stackrel{f}{\to} B\stackrel{g}{\to} C\to 0$ is said to be w-split if there exist $J=(d_1,\ldots,d_n)\in \mathrm{GV}(R)$ and $h_1,\ldots,h_n\in\mathrm{Hom}_R(C,B)$ such that $gh_k=d_k\mathbf{1}_C,\ k=1,\ldots,n$. Equivalently, there exist $q_1,\ldots,q_n\in\mathrm{Hom}_R(B,A)$ such that $q_kf=d_k\mathbf{1}_A,\ k=1,\ldots,n$. An R-module M is said to be w-split if there is a w-split short exact sequence of R-modules $0\to\ker(g)\to F\stackrel{g}{\to} M\to 0$, where F is a projective module, equivalently, $\mathrm{Ext}_R^1(M,N)$ is GV-torsion for all R-modules N (see [6]). Wang and Qiao showed that R is semi-simple if and only if every R-module is a w-split module. They choose to define "w-split" in the sense of projectivity. A natural question is whether an alternative kind of "w-split" corresponding to injectivity may also lead to a characterization of semi-simple rings.

In this paper, we introduce "w-split" modules in the sense of injectivity, which we call iw-split modules. After showing some equivalent descriptions of iw-split modules, we give a new characterization of semi-simple rings as: R is a semi-simple ring if and only if every R-module is iw-split. Additionally, the notion of iw-split dimension is introduced. With the help of iw-split modules and iw-split dimension, new characterizations of DW rings and Dedekind domains are given. More precisely, it is shown that R is a DW ring if and only if every iw-split module is an injective module; while R is a Dedekind domain if and only if every factor module of an iw-split module is iw-split.

2. iw-split modules and iw-split dimension

We begin this section by introducing the concept of iw-split modules.

Definition 2.1. An R-module N is said to be iw-split if there is a w-split short exact sequence of R-modules

$$0 \to N \to E \to C \to 0$$

with E injective.

According to the definition of iw-split modules, it is clear that an injective module is iw-split. The converse is not necessarily true (see Example 2.12).

Proposition 2.2. Let $\xi: 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a w-split exact sequence, J be a GV-ideal associated with ξ . Let M be an R-module. Then:

- (1) $J\alpha \subseteq \operatorname{Im}(g_*)$ for any $\alpha \in \operatorname{Hom}_R(M,C)$. Hence $J\operatorname{Hom}_R(M,C) \subseteq \operatorname{Im}(g_*)$.
- (2) If $\operatorname{Ext}^1_R(M,B)$ is a GV-torsion module, then $\operatorname{Ext}^1_R(M,A)$ is a GV-torsion module.
- (3) If $\operatorname{Ext}_R^1(M,B) = 0$, then $J\operatorname{Ext}_R^1(M,A) = 0$, that is, $\operatorname{Ext}_R^1(M,A)$ is an R/J-module.

Proof. Consider the induced exact sequence

- $0 \to \operatorname{Hom}_R(M,A) \to \operatorname{Hom}_R(M,B) \stackrel{g_*}{\to} \operatorname{Hom}_R(M,C) \to \operatorname{Ext}^1_R(M,A) \to \operatorname{Ext}^1_R(M,B).$
- (1) Since $\alpha \in \operatorname{Hom}_R(M, C)$, we have $\alpha q_k \in \operatorname{Hom}_R(M, B)$ and $d_k \alpha = g_*(\alpha q_k)$. So $J\alpha \subseteq \operatorname{Im}(g_*)$.
- (2) Set $L := \operatorname{Cok}(g_*)$. It is obtained from (1) that L is an R/J-module, and thus it is a GV-torsion module. It follows from the exact sequence $0 \to L \to \operatorname{Ext}^1_R(M,A) \to \operatorname{Ext}^1_R(M,B)$ that $\operatorname{Ext}^1_R(M,A)$ is a GV-torsion module.
- (3) When $\operatorname{Ext}_R^1(M,B)=0$, we get that $\operatorname{Ext}_R^1(M,A)=\operatorname{Cok}(g_*)$ is an R/J-module. \square

Theorem 2.3. The following statements are equivalent for an R-module N.

- (1) N is an iw-split module.
- (2) $\operatorname{Ext}_{R}^{1}(M, N)$ is GV-torsion for all R-modules M.
- (3) $\operatorname{Ext}_R^k(M,N)$ is GV-torsion for all R-modules M and for all $k \geq 1$.
- (4) If $0 \to A \to B \to C \to 0$ is an exact sequence, then the sequence

$$0 \to \operatorname{Hom}_R(C, N) \to \operatorname{Hom}_R(B, N) \to \operatorname{Hom}_R(A, N) \to 0$$

is a w-exact sequence.

- (5) Every exact sequence of the form $\eta: 0 \to N \to B \to C \to 0$ is w-split.
- (6) For any R-module monomorphism $f: A \to B$ and for each homomorphism $\alpha: A \to N$, there exist $J = (d_1, \ldots, d_n) \in GV(R)$ and homomorphisms $q_k: B \to N$ such that $q_k f = d_k \alpha, k = 1, \ldots, n$.
- (7) There exists $J \in GV(R)$ such that $Ext_R^1(M, N)$ is an R/J-module for any R-module M.

Proof. (1) \Rightarrow (2) Let $\xi: 0 \to N \xrightarrow{f} E \xrightarrow{g} C \to 0$ be a w-split exact sequence of R-modules with E injective. There exist $J = (d_1, \ldots, d_n) \in \mathrm{GV}(R)$ and homomorphisms $h_k \in \mathrm{Hom}_R(C, E)$ such that $gh_k = d_k \mathbf{1}_C, \ k = 1, \ldots, n$. Let $\alpha \in \mathrm{Hom}_R(M, C)$. Define $\beta_k = h_k \alpha$. Then $g\beta_k = gh_k \alpha = d_k \alpha, \ k = 1, \ldots, n$, so $J\alpha \subseteq \mathrm{Im}(g_*)$. Therefore g_* is a w-epimorphism. Thus

$$0 \to \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, E) \stackrel{g_*}{\to} \operatorname{Hom}_R(M, C) \to 0$$

is a w-exact sequence. Since

- $0 \to \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,E) \to \operatorname{Hom}_R(M,C) \to \operatorname{Ext}^1_R(M,N) \to 0$ is an exact sequence, it follows that $\operatorname{Ext}^1_R(M,N)$ is GV-torsion.
 - $(2) \Rightarrow (4)$ This is trivial.
- $(4)\Rightarrow(6)$ Since $f^*: \operatorname{Hom}_R(B,N) \to \operatorname{Hom}_R(A,N)$ is a w-epimorphism, then $\operatorname{Hom}_R(A,N)/\operatorname{Im}(f^*)$ is GV-torsion, so there exist $J=(d_1,\ldots,d_n)\in\operatorname{GV}(R)$ such that $J\alpha\subseteq\operatorname{Im}(f^*)$. Thus there are $q_k\in\operatorname{Hom}_R(B,N)$ such that $q_kf=d_k\alpha$, $k=1,\ldots,n$.
 - $(6)\Rightarrow(5)$ This follows from setting A=N in (6).
 - $(5)\Rightarrow(1)$ This follows easily from the definition of iw-split modules
- $(2)\Rightarrow(3)$ Let $0\to A\to P\to M\to 0$ be an exact sequence with P projective and k>1. Then $\operatorname{Ext}_R^k(M,N)\cong\operatorname{Ext}_R^{k-1}(C,N)$. By using induction on k, we see that $\operatorname{Ext}_R^k(M,N)$ is GV-torsion.
 - $(3) \Rightarrow (2)$ Clear.
- $(1)\Rightarrow (7)$ Since N is an iw-split module, then there is a w-split exact sequence $\xi:0\to N\to E\to C\to 0$, where E is an injective module. Let J be a GV-ideal associated with ξ . By Proposition 2.2(3), $\operatorname{Ext}^1_R(M,N)$ is an R/J-module for any R-module M.

$$(7)\Rightarrow(2)$$
 Clear.

Corollary 2.4. (1) Let N be injective. Then N is an iw-split module.

- (2) Let $0 \to A \to B \to C \to 0$ be an exact sequence with A an iw-split module. Then B is an iw-split module if and only if C is an iw-split module.
- (3) Let M and N be any R-modules. Then $M \bigoplus N$ is an iw-split module if and only if M and N are iw-split modules. Therefore every direct summand of an iw-split module is iw-split.

Proof. (1) Clear.

(2) Since $0 \to A \to B \to C \to 0$ be an exact sequence with A an *iw*-split module, then for any R-module M, there is an exact sequence

$$\operatorname{Ext}^1_R(M,A) \to \operatorname{Ext}^1_R(M,B) \to \operatorname{Ext}^1_R(M,C) \to \operatorname{Ext}^2_R(M,A).$$

Since A is an iw-split module, by Theorem 2.3, we see that $\operatorname{Ext}^1_R(M,A)$ and $\operatorname{Ext}^2_R(M,A)$ are GV-torsion. Therefore $\operatorname{Ext}^1_R(M,B)$ is GV-torsion if and only if $\operatorname{Ext}^1_R(M,C)$ is GV-torsion. By Theorem 2.3, we see that B is an iw-split module if and only if C is an iw-split module.

(3) Let K be an R-module. Since

$$\operatorname{Ext}_R^1(K, M \bigoplus N) = \operatorname{Ext}_R^1(K, M) \bigoplus \operatorname{Ext}_R^1(K, N),$$

then $\operatorname{Ext}^1_R(K, M \bigoplus N)$ is GV-torsion if and only if $\operatorname{Ext}^1_R(K, M)$ and $\operatorname{Ext}^1_R(K, N)$ are GV-torsion, so $M \bigoplus N$ is an iw-split module if and only if M and N are iw-split modules.

The concept of w-injective modules is introduced by Fanggui Wang and Hwankoo Kim in [2] and some equivalent characterizations of w-injective modules are given. An R-module E is said to be w-injective if

$$0 \to \operatorname{Hom}_R(C, L(E)) \to \operatorname{Hom}_R(B, L(E)) \to \operatorname{Hom}_R(A, L(E)) \to 0$$

is w-exact for any w-exact sequence $0 \to A \to B \to C \to 0$. In [2], it is also shown that a w-module E is w-injective if and only if $\operatorname{Ext}^1_R(M, E)$ is GV-torsion for all R-modules M. Hence we have the following:

Corollary 2.5. Let N be a w-module. Then N is a w-injective module if and only if N is an iw-split module.

Recall from [4] that an R-module D is said to be a GV-divisible module if JD = D for any $J \in GV(R)$, equivalently, $(R/J) \bigotimes_R D = 0$. By the introduction of [7], we can easily get the following lemma.

Lemma 2.6. (1) Let E be an injective module. Then E is a GV-divisible module.

- (2) Let $f: M \to N$ be an epimorphism and M be a GV-divisible module. Then N is a GV-divisible module.
- (3) Let $\{D_i\}$ be a family of GV-divisible modules. Then $\bigoplus_i D_i$ is a GV-divisible module.
- (4) Let $0 \to A \to B \to C \to 0$ be an exact sequence. If A and C are GV-divisible modules, then B is a GV-divisible module.

Proposition 2.7. Let N be an R-module.

- (1) If D_1 and D_2 are GV-divisible submodules of N, then $D_1 + D_2$ is a GV-divisible submodule of N.
- (2) If $\{D_i\}$ is an ascending chain on GV-divisible submodules of N, then $D := \bigcup_i D_i$ is a GV-divisible submodule of N.
- (3) N has the largest GV-divisible submodule.

Proof. (1) By the epimorphism $f: D_1 \bigoplus D_2 \to D_1 + D_2$ and Lemma 2.6, we can get the conclusion.

- (2) Let $x \in D$ and $J \in GV(R)$. Then there exists a subscript i such that $x \in D_i$. Thus $x \in JD_i \subseteq JD$. Hence D = JD.
- (3) By Zorn's lemma, N has a maximal GV-divisible submodule. By Proposition 2.7(1), we see that N has only one maximal GV-divisible submodule. Therefore the maximal GV-divisible submodule is the largest GV-divisible submodule. \Box

In order to get the Theorem 2.10 and Example 2.11, next, we will introduce the concept of GV-reduced module.

Definition 2.8. Let N be an R-module. If the largest GV-divisible submodule of N is 0, then N is said to be a GV-reduced module.

Proposition 2.9. (1) Every submodule of a GV-reduced module is still GV-reduced.

- (2) An R-module N is a GV-reduced module if and only if $\operatorname{Hom}_R(D, N) = 0$ for any GV-divisible module D.
- (3) Let D be the largest GV-divisible submodule of N. Then N/D is a GV-reduced module.
- (4) Let $\{N_i\}$ be a family of R-modules. Then $\prod_i N_i$ is a GV-reduced module if and only if every N_i is a GV-reduced module, if and only if $\bigoplus_i N_i$ is a GV-reduced module.
- (5) Let $J \in GV(R)$ and N be an R/J-module. Then N is a GV-reduced module.
- (6) Let $J \in GV(R)$ and $N = \bigoplus_m R/J^m$. Then N is a GV-reduced module.

Proof. (1) Clear.

(2) Let N be a GV-reduced module, D be a GV-divisible module and $f: D \to N$ be a homomorphism. By Lemma 2.6, f(D) is a GV-divisible submodule of N, thus f(D) = 0, that is f = 0. Therefore $\operatorname{Hom}_R(D, N) = 0$.

Conversely, suppose that D is a non-zero GV-divisible submodule of N, then the inclusion mapping $\lambda:D\to N$ is a non-zero mapping, which is a contradiction. Thus D=0. Hence N is a GV-reduced module.

- (3) Let D be the largest GV-divisible submodule of N and N_0 be a submodule of N which contains D. Then $0 \to D \to N_0 \to N_0/D \to 0$ is an exact sequence. If N_0/D is a GV-divisible module, by Lemma 2.6, we can get that N_0 is a GV-divisible submodule of N. Thus $N_0 = D$. Therefore N/D is a GV-reduced module.
 - (4) By Proposition 2.9(2), we can get the conclusion.
- (5) Let D be a GV-divisible submodule of N. Then D=JD=0. Therefore N is a GV-reduced module.
- (6) By Proposition 2.9(5), every R/J^m is a GV-reduced module. By Proposition 2.9(4), we see that N is a GV-reduced module.

Theorem 2.10. Let N be an R-module.

- (1) If there exists $J \in GV(R)$ such that JN = 0, then N is an iw-split module, that is, every R/J-module is iw-split.
- (2) Let N be a GV-reduced module. If N is an iw-split module, then there exists $J \in GV(R)$ such that JN = 0.

Proof. (1) Since JN=0, then N is an R/J-module. So $\operatorname{Ext}^1_R(M,N)$ is an R/J-module for all R-modules M. By Theorem 2.3, we see that N is an iw-split module.

(2) Let $\xi: 0 \to N \to E \to C \to 0$ be a w-split exact sequence of Rmodules with E injective. By Lemma 2.6, E is a GV-divisible module. By Proposition 2.9 and N is a GV-reduced module, we have $\operatorname{Hom}_R(E,N)=0$. So $0 \to \operatorname{Hom}_R(N,N) \to \operatorname{Ext}^1_R(C,N)$ is an exact sequence. By Theorem 2.3, there exists $J \in GV(R)$ such that $\operatorname{Ext}^1_R(C,N)$ is an R/J-module. Thus $\operatorname{Hom}_R(N,N)$ is an R/J-module. Hence $J \mathbf{1}_N = 0$. Therefore JN = 0.

According to the definitions of iw-split modules and w-injective modules, it is clear that an iw-split module is w-injective. The converse is not necessarily true. Next, we will give an example of a w-injective module, which is not iw-split.

Example 2.11. Let K be a field, x and y be indeterminates, R = K[x, y], I=(x,y). Then

- (1) $I \in GV(R)$. (2) $\bigcap_{m=1}^{\infty} I^m = 0$. (3) Let $N = \bigcap_{m=1}^{\infty} R/I^m$. Then N is a w-injective module. However, Nis not an *iw*-split module.

- Proof. (1) Clear. (2) If $\bigcap_{m=1}^{\infty} I^m \neq 0$, then there exists a polynomial $f \in \bigcap_{m=1}^{\infty} I^m$ and $f \neq 0$. Let $\deg(f) = s$. Then $f \notin I^{s+1}$, a contradiction. Therefore f = 0.
- (3) Since N is a GV-torsion module, then N is w-injective. If N is an iwsplit module, by Theorem 2.10, there exists $J \in GV(R)$ such that JN = 0. So $J(R/I^m) = (J+I^m)/I^m = 0$ for any m. Hence for any m, we have $J \subseteq I^m$. By Example 2.11(2), J=0, a contradiction. Therefore, N is not an iw-split module.

Example 2.12. Let R be an unique factorization domain and $u, v \in R$ be relatively prime. Then $J=(u,v)\in \mathrm{GV}(R)$. By Theorem 2.10, we can get R/Jis iw-split. If $J \neq R$, then R/J is not a division module, therefore R/J is not an injective module.

In [1], Almahdi and Assaad introduced the concept of w-split dimension of modules. Let M be an R-module. Define $w\text{-sd}(M) \leq n$ if M has a w-split module resolution of length n. If no such finite resolution exists, then define w-sd $(M) = \infty$. Correspondingly, in the following we will define the concept of iw-split dimension of modules.

Definition 2.13. Let N be an R-module. If there exists an exact sequence

$$0 \to N \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$$
,

where E_0, E_1, \ldots, E_n are iw-split modules and n is the least such nonnegative integer, we call iw-sd_R(N) the iw-split dimension of N, and we define $iw\text{-sd}_R(N) = n$. If no such finite resolution exists, then we define $iw\text{-sd}_R(N) = n$

Clearly, we have $iw\text{-sd}_R(N) \leq id_R(N)$ for all R-modules N.

The corresponding dimension of R-modules is used to measure how far away a module is from being a certain kind of module. For example, the projective dimension of an R-module is used to measure how far away the module is from being projective, and the injective dimension of an R-module is used to measure how far away the module is from being injective. So the iw-split dimension of R-modules measures how far away a module is from being an iw-split module. Hence we can get the following.

Example 2.14. Let N be an iw-split module. Then $0 \to N \to N \to 0$ is a resolution of N, thus iw-sd $_R(N) = 0$. Conversely, if iw-sd $_R(N) = 0$, then N is iw-split.

Proposition 2.15. The following statements are equivalent for an R-module N and a nonnegative integer n.

- (1) $iw\text{-sd}_R(N) \leq n$.
- (2) $\operatorname{Ext}_R^{n+1}(M,N)$ is GV-torsion for all R-modules M.
- (3) Let $0 \to N \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$ be an exact sequence, where E_0, \ldots, E_{n-1} are iw-split modules. Then E_n is iw-split.
- (4) Let $0 \to N \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$ be an exact sequence, where E_0, \ldots, E_{n-1} are injective modules. Then E_n is iw-split.

Proof. (1) \Rightarrow (2) By the definition of iw-split dimension, there exists an exact sequence

$$0 \to N \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$$
,

where E_0, E_1, \dots, E_n are iw-split modules. Thus there is an exact sequence

$$\operatorname{Ext}_R^n(M, E_n) \to \operatorname{Ext}_R^{n+1}(M, N) \to \operatorname{Ext}_R^{n+1}(M, E_0).$$

Since E_0 and E_n are iw-split modules, by Theorem 2.3, we see that $\operatorname{Ext}_R^n(M, E_0)$ and $\operatorname{Ext}_R^n(M, E_n)$ are GV-torsion. Therefore $\operatorname{Ext}_R^{n+1}(M, N)$ is GV-torsion.

 $(2)\Rightarrow(3)$ Suppose that (2) holds. Thus there exists an exact sequence

$$\operatorname{Ext}^1_R(M, E_{n-1}) \to \operatorname{Ext}^1_R(M, E_n) \to \operatorname{Ext}^2_R(M, N)$$

for all R-modules M. Since $\operatorname{Ext}^1_R(M,E_{n-1})$ and $\operatorname{Ext}^2_R(M,N)$ are GV-torsion, then $\operatorname{Ext}^1_R(M,E_n)$ is GV-torsion. By Theorem 2.3, E_n is iw-split.

$$(3)\Rightarrow (4)\Rightarrow (1)$$
 This follows from Corollary 2.4(1).

Proposition 2.16. Let $0 \to A \to B \to C \to 0$ be an exact sequence. Then:

- (1) If $iw\operatorname{-sd}_R(B) < iw\operatorname{-sd}_R(A)$, then $iw\operatorname{-sd}_R(C) = iw\operatorname{-sd}_R(A) 1$.
- (2) If $iw\text{-sd}_R(A) \leq iw\text{-sd}_R(B)$, then $iw\text{-sd}_R(B) = iw\text{-sd}_R(C)$.

Proof. Let M be an R-module and $k \geq 0$.

(1) This is obtained directly from the exact sequence

$$\operatorname{Ext}_R^k(M,B) \to \operatorname{Ext}_R^k(M,C) \to \operatorname{Ext}_R^{k+1}(M,A) \to \operatorname{Ext}_R^{k+1}(M,B).$$

(2) This follows from the exact sequence

$$\operatorname{Ext}_R^k(M,A) \to \operatorname{Ext}_R^k(M,B) \to \operatorname{Ext}_R^k(M,C) \to \operatorname{Ext}_R^{k+1}(M,A). \qquad \Box$$

Recall that an R-module M is called a w-flat module if the induced map $1 \otimes f: M \otimes_R A \to M \otimes_R B$ is a w-monomorphism for any w-monomorphism $f: A \to B$. The concept of w-flat dimension was introduced by Fanggui Wang and Lei Qiao in [5]. Let M be an R-module. Recall that w-fd $(M) \leq n$ if there exists an exact sequence

$$0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to M \to 0,$$

where $F_n, F_{n-1}, \ldots, F_0$ are w-flat. It is clear that w-fld $(M) \leq w$ -sd $(M) \leq \operatorname{pd}_R(M)$. Some equivalent characterizations of w-split dimension are given in [1]. For example, let M be an R-module and n be a nonnegative integer. Then w-sd $(M) \leq n$ if and only if $\operatorname{Ext}_R^{n+1}(M,N)$ is GV-torsion for all R-modules N, if and only if K_n is w-split whenever there is an exact sequence $0 \to K_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ with P_0, \ldots, P_{n-1} projective. A ring R is called a DW ring if every ideal of R is a w-ideal. Fanggui Wang and Hwankoo Kim in [3] show that if R is a DW ring, then the class of projective R-modules, the class of w-split R-modules, and the class of w-projective R-modules are equivalent. Almahdi and Assaad in [1, Proposition 3.4] built on this in the following way. A ring R is a DW ring if and only if $\operatorname{pd}_R(M) = w$ -sd(R) for all R-modules M, if and only if $\operatorname{fd}_R(M) = w$ -fd(M) for all R-modules M.

In 2021, Almahdi and Assaad used w-split modules to give a characterization of DW rings. For example, let R be a ring. Then R is a DW ring if and only if every w-projective R-module is projective, if and only if every w-split R-module is projective, if and only if every w-flat R-module is flat. Based on this use of w-split modules to characterize DW rings, the natural question arises whether iw-split modules can similarly characterize DW rings.

Theorem 2.17. Let R be a ring. Then the following statements are equivalent.

- (1) Every w-injective R-module is injective.
- (2) Every iw-split R-module is injective.
- (3) R is a DW ring.

Proof. (1) \Rightarrow (2) By the definitions of w-injective modules and iw-split modules, we can get the conclusion.

 $(2)\Rightarrow (3)$ Let $J\in \mathrm{GV}(R)$ and $N=J/J^2$. Then JN=0. According to Theorem 2.10, N is an iw-split module. Now let $f:J\to N$ be the natural homomorphism, so $f(a)=\bar{a},\ a\in J$. By $(2),\ N$ is an injective module. Thus there exists a homomorphism $g:R\to N$ such that f(a)=g(a) for all $a\in J$. Denoted by $g(1)=\bar{b}$ for all $b\in J$, since $\bar{b}=f(b)=g(b)=bg(1)=\bar{b}^2$, so $g(1)=\bar{b}=\bar{0}$, therefore g=0. Since f is an epimorphism, it follows that g is also an epimorphism. Hence N=0, that is, $J=J^2$. By [4, Theorem 1.8.22], J can be generated by an idempotent element, thus J is a projective ideal. Therefore J is a w-module, so $J=J_w=R$. Hence R is a DW ring.

$$(3)\Rightarrow(1)$$
 Clear.

Corollary 2.18. Let R be a DW ring and N be an R-module. Then

$$iw\operatorname{-sd}_R(N) = w\operatorname{-id}_R(N).$$

Proof. This is obtained directly from Corollary 2.5.

3. Characterizations of semi-simple rings and Dedekind domains

In the following, we will discuss the relationships between w-split dimension of modules and iw-split dimension of modules.

Theorem 3.1. The following statements are equivalent for a ring R and a nonnegative integer n.

- (1) $w\text{-sd}(M) \leq n \text{ for all } R\text{-modules } M.$
- (2) $iw\text{-sd}(N) \leq n \text{ for all } R\text{-modules } N.$
- (3) $\operatorname{Ext}_R^k(M,N)$ is GV-torsion for all R-modules M,N and for all k>n.
- (4) $\operatorname{Ext}_{R}^{n+1}(M,N)$ is GV-torsion for all R-modules M,N.

Proof. $(1)\Rightarrow(2)$ This follows from [1, Proposition 3.3] and Proposition 2.15.

(2) \Rightarrow (3) Since iw-sd(N) $\leq n$ for all R-modules N, then there is a resolution of an iw-split module N

$$0 \to N \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$$
,

where E_0, E_1, \ldots, E_n are *iw*-split modules. Thus when k > n, $\operatorname{Ext}_R^k(M, N) \cong \operatorname{Ext}_R^{k-n}(M, E_n)$ for all R-modules M. Hence $\operatorname{Ext}_R^k(M, N)$ is GV-torsion.

 $(3) \Rightarrow (4)$ This is obvious.

$$(4)\Rightarrow(1)$$
 This follows easily from [1, Proposition 3.3].

The following results give new equivalent characterizations of semi-simple rings and Dedekind domains by iw-split modules.

Theorem 3.2. The following statements are equivalent for a ring R.

- (1) Every R-module is a w-split module.
- (2) Every R-module is an iw-split module.
- (3) R is a semi-simple ring.
- (4) Every cyclic R-module is an iw-split module.

Proof. (1) \Rightarrow (2) Let M be an R-module. It follows the assumption that M is w-split, so w-sd(M) = 0. By Theorem 3.1, iw-sd(N) = 0 for all R-modules N. Thus every R-module is an iw-split module.

 $(3)\Rightarrow(1)$ Let N be an R-module. Since R is a semi-simple ring, then N is injective. According to Corollary 2.4, we can get N is iw-split, thus iw-sd(N)=0. By Theorem 3.1, w-sd(N)=0. It follows from the definition of w-split dimension, N is a w-split module, so every R-module is a w-split module.

 $(2) \Rightarrow (4)$ This is trivial.

 $(4)\Rightarrow(3)$ Let M be a cyclic R-module and N be a cyclic torsion-free w-module. By the hypothesis, N is iw-split, so $\operatorname{Ext}^1_R(M,N)$ is GV-torsion. Thus M is w-projective. By [3, Theorem 3.15], we can get the conclusion.

Theorem 3.3. The following statements are equivalent for a ring R.

- (1) Every factor module of an iw-split module is iw-split.
- (2) Every factor module of an injective module is iw-split.
- (3) Every submodule of a w-split module is w-split.
- (4) Every submodule of a projective module is w-split.
- (5) R is hereditary.

Proof. $(1) \Rightarrow (2)$ This is trivial.

- $(2)\Rightarrow (3)$ Let P be a w-split module and A be a submodule of P. Let N be any R-module. Then there is an exact sequence $0\to N\to E\to C\to 0$, where E is injective. By the hypothesis, $\operatorname{Ext}^1_R(A,N)\cong\operatorname{Ext}^2_R(P/A,N)\cong\operatorname{Ext}^1_R(P/A,C)$ is GV-torsion, and so A is a w-split module.
 - $(3) \Rightarrow (4)$ This is clear.
- $(4)\Rightarrow (5)$ It suffices to prove that R is a DW ring. Let $J\in \mathrm{GV}(R)$ and $R_J=R$. Let $F=\bigoplus_{J\in \mathrm{GV}(R)}R_J$ and $M=\bigoplus_{J\in \mathrm{GV}(R)}J$. Then F is a free R-module, M is a submodule of F and $M_w=F$. It follows from the assumption that M is w-split. By [6, Proposition 2.8], there exists $I\in \mathrm{GV}(R)$ such that $IF\subseteq M$. Therefore $I\subseteq J$ for all $J\in \mathrm{GV}(R)$. Especially, $I\subseteq I^2$. So I is generated by an idempotent element. Thus I is a projective ideal, therefore I=R. Hence R has only one GV-ideal, that is R itself, By the definition of DW rings, R is a DW ring.
- $(5)\Rightarrow(1)$ By the hypothesis, every factor module of an injective module is injective. By Corollary 2.4, every factor module of an iw-split module is iw-split.

As a consequence of the statement of Theorem 3.3, we have the following corollary.

Corollary 3.4. Let R be an integral domain. Then every factor module of an iw-split module is iw-split if and only if R is a Dedekind domain.

Acknowledgements. The author would like to thank the referee for a careful reading and relevant comments which substantially improved the paper. This work was supported by the Foundation of Chengdu University of Information Technology (KYTZ2022147).

References

- F. A. A. Almahdi and R. A. K. Assaad, A note on w-split modules, Palest. J. Math. 10 (2021), no. 1, 160–168.
- [2] F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509–525. https://doi.org/10.4134/JKMS.2014.51.3.509

- [3] F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa. 2014.07.025
- [4] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- [5] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327–1338. https://doi.org/10.4134/BKMS.2015.52.4. 1327
- [6] F. Wang and L. Qiao, A new version of a theorem of Kaplansky, Comm. Algebra 48 (2020), no. 8, 3415–3428. https://doi.org/10.1080/00927872.2020.1739289
- [7] F. Wang and L. Qiao, Two applications of Nagata rings and modules, J. Algebra Appl. 19 (2020), no. 6, 2050115, 15 pp. https://doi.org/10.1142/S0219498820501157

XIAOYING WU
COLLEGE OF APPLIED MATHEMATICS
CHENGDU UNIVERSITY OF INFORMATION TECHNOLOGY
CHENGDU, SICHUAN 610225, P. R. CHINA
Email address: mengwyy2017@163.com