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iw-SPLIT MODULES

Xiaoying Wu

Abstract. In this paper, the notions of iw-split modules and iw-split

dimension are introduced, and some equivalent characterizations of these

notions are given. With the help of iw-split modules and iw-split di-
mensions, new characterizations of DW rings, semi-simple rings, and

Dedekind domains are given. More precisely, it is shown that R is a
DW ring if and only if every iw-split module is an injective module; while

R is a semi-simple ring if and only if every R-module is an iw-split mod-

ule; and R is a Dedekind domain if and only if every factor module of an
iw-split module is iw-split.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity 1 and

RM be the category of R-modules. Recall from [4] that an ideal J of R is
called a Glaz-Vasconcelos ideal (a GV-ideal for short) if J is finitely generated
and the natural homomorphism φ : R → J∗ = HomR(J,R) is an isomorphism,
denoted by J ∈ GV(R). Let M be an R-module. Define

torGV(M) = {x ∈ M | Jx = 0 for some J ∈ GV(R)}.

Thus torGV(M) is a submodule of M . One calls M GV-torsion (resp., GV-
torsionfree) if torGV(M) = M (resp., torGV(M) = 0). A GV-torsionfree mod-
ule M is called a w-module if Ext1R(R/J,M) = 0 for all J ∈ GV(R). For any
GV-torsionfree module M ,

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M ,
where E(M) denotes the injective envelope of M . It is clear that a GV-
torsionfree module M is a w-module if and only if Mw = M . Let M and N be
R-modules and let f : M → N be a homomorphism (see [4]). Then, f is called
a w-monomorphism (resp., a w-epimorphism, a w-isomorphism) if fm : Mm →
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Nm is a monomorphism (resp., an epimorphism, an isomorphism) for any max-
imal w-ideal m of R. A sequence A → B → C of R-modules and homomor-
phisms is called w-exact if the sequence Am → Bm → Cm is exact for any maxi-
mal w-ideal m of R. Let M be an R-module and set L(M) = (M/torGV(M))w.
Then M is said to be w-projective if Ext1R(L(M), N) is a GV-torsion module
for any torsion-free w-module N . From the definition, it is clear that projective
modules and GV-torsion modules are w-projective. An R-module E is said to
be w-injective if for any w-exact sequence 0 → A → B → C → 0, the induced
sequence 0 → HomR(C,L(E)) → HomR(B,L(E)) → HomR(A,L(E)) → 0 is
also w-exact. For unexplained terminologies and notations, we refer to [4].

It is well known that semi-simple rings can be characterized by either pro-
jective modules or injective modules, i.e., R is a semi-simple ring if and only
if every R-module is a projective module, if and only if every R-module is an
injective module; see for example [4, Theorem 7].

Moreover, semi-simple rings are characterized via w-operation. Namely, R
is a semi-simple ring if and only if every R-module is a w-projective module
(see Fanggui Wang and Hwankoo Kim [3, Theorem 3.15]), and if and only if
every R-module is a w-injective module (see Almahdi and Assaad [1, Theorem
2.12]).

Recently, in 2020, Fanggui Wang and Lei Qiao introduced the concepts of
w-split short exact sequences and w-split modules. A short exact sequence

of R-modules ξ : 0 → A
f→ B

g→ C → 0 is said to be w-split if there exist
J = (d1, . . . , dn) ∈ GV(R) and h1, . . . , hn ∈ HomR(C,B) such that ghk =
dk1C , k = 1, . . . , n. Equivalently, there exist q1, . . . , qn ∈ HomR(B,A) such
that qkf = dk1A, k = 1, . . . , n. An R-module M is said to be w-split if there

is a w-split short exact sequence of R-modules 0 → ker(g) → F
g→ M → 0,

where F is a projective module, equivalently, Ext1R(M,N) is GV-torsion for all
R-modules N (see [6]). Wang and Qiao showed that R is semi-simple if and
only if every R-module is a w-split module. They choose to define “w-split”
in the sense of projectivity. A natural question is whether an alternative kind
of “w-split” corresponding to injectivity may also lead to a characterization of
semi-simple rings.

In this paper, we introduce “w-split” modules in the sense of injectivity,
which we call iw-split modules. After showing some equivalent descriptions of
iw-split modules, we give a new characterization of semi-simple rings as: R is
a semi-simple ring if and only if every R-module is iw-split. Additionally, the
notion of iw-split dimension is introduced. With the help of iw-split modules
and iw-split dimension, new characterizations of DW rings and Dedekind do-
mains are given. More precisely, it is shown that R is a DW ring if and only if
every iw-split module is an injective module; while R is a Dedekind domain if
and only if every factor module of an iw-split module is iw-split.
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2. iw-split modules and iw-split dimension

We begin this section by introducing the concept of iw-split modules.

Definition 2.1. An R-module N is said to be iw-split if there is a w-split
short exact sequence of R-modules

0 → N → E → C → 0

with E injective.

According to the definition of iw-split modules, it is clear that an injective
module is iw-split. The converse is not necessarily true (see Example 2.12).

Proposition 2.2. Let ξ : 0 → A
f→ B

g→ C → 0 be a w-split exact sequence, J
be a GV-ideal associated with ξ. Let M be an R-module. Then:

(1) Jα ⊆ Im(g∗) for any α ∈ HomR(M,C). Hence JHomR(M,C) ⊆
Im(g∗).

(2) If Ext1R(M,B) is a GV-torsion module, then Ext1R(M,A) is a GV-
torsion module.

(3) If Ext1R(M,B) = 0, then JExt1R(M,A) = 0, that is, Ext1R(M,A) is an
R/J-module.

Proof. Consider the induced exact sequence

0 → HomR(M,A) → HomR(M,B)
g∗→ HomR(M,C) → Ext1R(M,A) → Ext1R(M,B).

(1) Since α ∈ HomR(M,C), we have αqk ∈ HomR(M,B) and dkα = g∗(αqk).
So Jα ⊆ Im(g∗).

(2) Set L := Cok(g∗). It is obtained from (1) that L is an R/J-module, and
thus it is a GV-torsion module. It follows from the exact sequence 0 → L →
Ext1R(M,A) → Ext1R(M,B) that Ext1R(M,A) is a GV-torsion module.

(3) When Ext1R(M,B) = 0, we get that Ext1R(M,A) = Cok(g∗) is an R/J-
module. □

Theorem 2.3. The following statements are equivalent for an R-module N .

(1) N is an iw-split module.
(2) Ext1R(M,N) is GV-torsion for all R-modules M .

(3) ExtkR(M,N) is GV-torsion for all R-modules M and for all k ≥ 1.
(4) If 0 → A → B → C → 0 is an exact sequence, then the sequence

0 → HomR(C,N) → HomR(B,N) → HomR(A,N) → 0

is a w-exact sequence.
(5) Every exact sequence of the form η : 0 → N → B → C → 0 is w-split.
(6) For any R-module monomorphism f : A → B and for each homo-

morphism α : A → N , there exist J = (d1, . . . , dn) ∈ GV(R) and
homomorphisms qk : B → N such that qkf = dkα, k = 1, . . . , n.

(7) There exists J ∈ GV(R) such that Ext1R(M,N) is an R/J-module for
any R-module M .
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Proof. (1)⇒(2) Let ξ : 0 → N
f→ E

g→ C → 0 be a w-split exact sequence
of R-modules with E injective. There exist J = (d1, . . . , dn) ∈ GV(R) and
homomorphisms hk ∈ HomR(C,E) such that ghk = dk1C , k = 1, . . . , n. Let
α ∈ HomR(M,C). Define βk = hkα. Then gβk = ghkα = dkα, k = 1, . . . , n,
so Jα ⊆ Im(g∗). Therefore g∗ is a w-epimorphism. Thus

0 → HomR(M,N) → HomR(M,E)
g∗→ HomR(M,C) → 0

is a w-exact sequence. Since

0 → HomR(M,N) → HomR(M,E) → HomR(M,C) → Ext1R(M,N) → 0

is an exact sequence, it follows that Ext1R(M,N) is GV-torsion.
(2)⇒(4) This is trivial.
(4)⇒(6) Since f∗ : HomR(B,N) → HomR(A,N) is a w-epimorphism, then

HomR(A,N)/Im(f∗) is GV-torsion, so there exist J = (d1, . . . , dn) ∈ GV(R)
such that Jα ⊆ Im(f∗). Thus there are qk ∈ HomR(B,N) such that qkf = dkα,
k = 1, . . . , n.

(6)⇒(5) This follows from setting A = N in (6).
(5)⇒(1) This follows easily from the definition of iw-split modules
(2)⇒(3) Let 0 → A → P → M → 0 be an exact sequence with P projective

and k > 1. Then ExtkR(M,N) ∼= Extk−1
R (C,N). By using induction on k, we

see that ExtkR(M,N) is GV-torsion.
(3)⇒(2) Clear.
(1)⇒(7) Since N is an iw-split module, then there is a w-split exact sequence

ξ : 0 → N → E → C → 0, where E is an injective module. Let J be a GV-ideal
associated with ξ. By Proposition 2.2(3), Ext1R(M,N) is an R/J-module for
any R-module M .

(7)⇒(2) Clear. □

Corollary 2.4. (1) Let N be injective. Then N is an iw-split module.
(2) Let 0 → A → B → C → 0 be an exact sequence with A an iw-split

module. Then B is an iw-split module if and only if C is an iw-split
module.

(3) Let M and N be any R-modules. Then M
⊕

N is an iw-split module
if and only if M and N are iw-split modules. Therefore every direct
summand of an iw-split module is iw-split.

Proof. (1) Clear.
(2) Since 0 → A → B → C → 0 be an exact sequence with A an iw-split

module, then for any R-module M , there is an exact sequence

Ext1R(M,A) → Ext1R(M,B) → Ext1R(M,C) → Ext2R(M,A).

Since A is an iw-split module, by Theorem 2.3, we see that Ext1R(M,A) and
Ext2R(M,A) are GV-torsion. Therefore Ext1R(M,B) is GV-torsion if and only
if Ext1R(M,C) is GV-torsion. By Theorem 2.3, we see that B is an iw-split
module if and only if C is an iw-split module.
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(3) Let K be an R-module. Since

Ext1R(K,M
⊕

N) = Ext1R(K,M)
⊕

Ext1R(K,N),

then Ext1R(K,M
⊕

N) is GV-torsion if and only if Ext1R(K,M) and Ext1R(K,N)

are GV-torsion, so M
⊕

N is an iw-split module if and only if M and N are
iw-split modules. □

The concept of w-injective modules is introduced by Fanggui Wang and
Hwankoo Kim in [2] and some equivalent characterizations of w-injective mod-
ules are given. An R-module E is said to be w-injective if

0 → HomR(C,L(E)) → HomR(B,L(E)) → HomR(A,L(E)) → 0

is w-exact for any w-exact sequence 0 → A → B → C → 0. In [2], it is also
shown that a w-module E is w-injective if and only if Ext1R(M,E) is GV-torsion
for all R-modules M . Hence we have the following:

Corollary 2.5. Let N be a w-module. Then N is a w-injective module if and
only if N is an iw-split module.

Recall from [4] that an R-module D is said to be a GV-divisible module
if JD = D for any J ∈ GV(R), equivalently, (R/J)

⊗
R D = 0. By the

introduction of [7], we can easily get the following lemma.

Lemma 2.6. (1) Let E be an injective module. Then E is a GV-divisible
module.

(2) Let f : M → N be an epimorphism and M be a GV-divisible module.
Then N is a GV-divisible module.

(3) Let {Di} be a family of GV-divisible modules. Then
⊕

i Di is a GV-
divisible module.

(4) Let 0 → A → B → C → 0 be an exact sequence. If A and C are
GV-divisible modules, then B is a GV-divisible module.

Proposition 2.7. Let N be an R-module.

(1) If D1 and D2 are GV-divisible submodules of N , then D1 + D2 is a
GV-divisible submodule of N .

(2) If {Di} is an ascending chain on GV-divisible submodules of N , then
D :=

⋃
i Di is a GV-divisible submodule of N .

(3) N has the largest GV-divisible submodule.

Proof. (1) By the epimorphism f : D1

⊕
D2 → D1 +D2 and Lemma 2.6, we

can get the conclusion.
(2) Let x ∈ D and J ∈ GV(R). Then there exists a subscript i such that

x ∈ Di. Thus x ∈ JDi ⊆ JD. Hence D = JD.
(3) By Zorn’s lemma, N has a maximal GV-divisible submodule. By Propo-

sition 2.7(1), we see that N has only one maximal GV-divisible submodule.
Therefore the maximal GV-divisible submodule is the largest GV-divisible sub-
module. □
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In order to get the Theorem 2.10 and Example 2.11, next, we will introduce
the concept of GV-reduced module.

Definition 2.8. Let N be an R-module. If the largest GV-divisible submodule
of N is 0, then N is said to be a GV-reduced module.

Proposition 2.9. (1) Every submodule of a GV-reduced module is still
GV-reduced.

(2) An R-module N is a GV-reduced module if and only if HomR(D,N) =
0 for any GV-divisible module D.

(3) Let D be the largest GV-divisible submodule of N . Then N/D is a
GV-reduced module.

(4) Let {Ni} be a family of R-modules. Then
∏

i Ni is a GV-reduced module
if and only if every Ni is a GV-reduced module, if and only if

⊕
i Ni

is a GV-reduced module.
(5) Let J ∈ GV(R) and N be an R/J-module. Then N is a GV-reduced

module.
(6) Let J ∈ GV(R) and N =

⊕
m R/Jm. Then N is a GV-reduced module.

Proof. (1) Clear.
(2) Let N be a GV-reduced module, D be a GV-divisible module and f :

D → N be a homomorphism. By Lemma 2.6, f(D) is a GV-divisible submodule
of N , thus f(D) = 0, that is f = 0. Therefore HomR(D,N) = 0.

Conversely, suppose that D is a non-zero GV-divisible submodule of N ,
then the inclusion mapping λ : D → N is a non-zero mapping, which is a
contradiction. Thus D = 0. Hence N is a GV-reduced module.

(3) Let D be the largest GV-divisible submodule of N and N0 be a sub-
module of N which contains D. Then 0 → D → N0 → N0/D → 0 is an exact
sequence. If N0/D is a GV-divisible module, by Lemma 2.6, we can get that
N0 is a GV-divisible submodule of N . Thus N0 = D. Therefore N/D is a
GV-reduced module.

(4) By Proposition 2.9(2), we can get the conclusion.
(5) Let D be a GV-divisible submodule of N . Then D = JD = 0. Therefore

N is a GV-reduced module.
(6) By Proposition 2.9(5), every R/Jm is a GV-reduced module. By Propo-

sition 2.9(4), we see that N is a GV-reduced module. □

Theorem 2.10. Let N be an R-module.

(1) If there exists J ∈ GV(R) such that JN = 0, then N is an iw-split
module, that is, every R/J-module is iw-split.

(2) Let N be a GV-reduced module. If N is an iw-split module, then there
exists J ∈ GV(R) such that JN = 0.

Proof. (1) Since JN = 0, then N is an R/J-module. So Ext1R(M,N) is an
R/J-module for all R-modules M . By Theorem 2.3, we see that N is an iw-
split module.
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(2) Let ξ : 0 → N → E → C → 0 be a w-split exact sequence of R-
modules with E injective. By Lemma 2.6, E is a GV-divisible module. By
Proposition 2.9 and N is a GV-reduced module, we have HomR(E,N) = 0. So
0 → HomR(N,N) → Ext1R(C,N) is an exact sequence. By Theorem 2.3, there
exists J ∈ GV(R) such that Ext1R(C,N) is an R/J-module. Thus HomR(N,N)
is an R/J-module. Hence J 1N = 0. Therefore JN = 0. □

According to the definitions of iw-split modules and w-injective modules, it
is clear that an iw-split module is w-injective. The converse is not necessarily
true. Next, we will give an example of a w-injective module, which is not
iw-split.

Example 2.11. Let K be a field, x and y be indeterminates, R = K[x, y],
I = (x, y). Then

(1) I ∈ GV(R).
(2)

⋂∞
m=1 I

m = 0.
(3) Let N =

⋂∞
m=1 R/Im. Then N is a w-injective module. However, N

is not an iw-split module.

Proof. (1) Clear.
(2) If

⋂∞
m=1 I

m ̸= 0, then there exists a polynomial f ∈
⋂∞

m=1 I
m and f ̸= 0.

Let deg(f) = s. Then f ̸∈ Is+1, a contradiction. Therefore f = 0.
(3) Since N is a GV-torsion module, then N is w-injective. If N is an iw-

split module, by Theorem 2.10, there exists J ∈ GV(R) such that JN = 0. So
J(R/Im) = (J + Im)/Im = 0 for any m. Hence for any m, we have J ⊆ Im.
By Example 2.11(2), J = 0, a contradiction. Therefore, N is not an iw-split
module. □

Example 2.12. Let R be an unique factorization domain and u, v ∈ R be
relatively prime. Then J = (u, v) ∈ GV(R). By Theorem 2.10, we can get R/J
is iw-split. If J ̸= R, then R/J is not a division module, therefore R/J is not
an injective module.

In [1], Almahdi and Assaad introduced the concept of w-split dimension of
modules. Let M be an R-module. Define w-sd(M) ≤ n if M has a w-split
module resolution of length n. If no such finite resolution exists, then define
w-sd(M) = ∞. Correspondingly, in the following we will define the concept of
iw-split dimension of modules.

Definition 2.13. Let N be an R-module. If there exists an exact sequence

0 → N → E0 → · · · → En−1 → En → 0,

where E0, E1, . . . , En are iw-split modules and n is the least such nonnega-
tive integer, we call iw-sdR(N) the iw-split dimension of N , and we define
iw-sdR(N) = n. If no such finite resolution exists, then we define iw-sdR(N) =
∞.
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Clearly, we have iw-sdR(N) ≤ idR(N) for all R-modules N .
The corresponding dimension of R-modules is used to measure how far away

a module is from being a certain kind of module. For example, the projective
dimension of an R-module is used to measure how far away the module is from
being projective, and the injective dimension of an R-module is used to measure
how far away the module is from being injective. So the iw-split dimension of
R-modules measures how far away a module is from being an iw-split module.
Hence we can get the following.

Example 2.14. Let N be an iw-split module. Then 0 → N → N → 0 is a
resolution of N , thus iw-sdR(N) = 0. Conversely, if iw-sdR(N) = 0, then N is
iw-split.

Proposition 2.15. The following statements are equivalent for an R-module
N and a nonnegative integer n.

(1) iw-sdR(N) ≤ n.
(2) Extn+1

R (M,N) is GV-torsion for all R-modules M .
(3) Let 0 → N → E0 → · · · → En−1 → En → 0 be an exact sequence,

where E0, . . . , En−1 are iw-split modules. Then En is iw-split.
(4) Let 0 → N → E0 → · · · → En−1 → En → 0 be an exact sequence,

where E0, . . . , En−1 are injective modules. Then En is iw-split.

Proof. (1)⇒(2) By the definition of iw-split dimension, there exists an exact
sequence

0 → N → E0 → · · · → En−1 → En → 0,

where E0, E1, . . . , En are iw-split modules. Thus there is an exact sequence

ExtnR(M,En) → Extn+1
R (M,N) → Extn+1

R (M,E0).

Since E0 and En are iw-split modules, by Theorem 2.3, we see that ExtnR(M,E0)

and ExtnR(M,En) are GV-torsion. Therefore Extn+1
R (M,N) is GV-torsion.

(2)⇒(3) Suppose that (2) holds. Thus there exists an exact sequence

Ext1R(M,En−1) → Ext1R(M,En) → Ext2R(M,N)

for all R-modules M . Since Ext1R(M,En−1) and Ext2R(M,N) are GV-torsion,
then Ext1R(M,En) is GV-torsion. By Theorem 2.3, En is iw-split.

(3)⇒(4)⇒(1) This follows from Corollary 2.4(1). □

Proposition 2.16. Let 0 → A → B → C → 0 be an exact sequence. Then:

(1) If iw-sdR(B) < iw-sdR(A), then iw-sdR(C) = iw-sdR(A)− 1.
(2) If iw-sdR(A) ≤ iw-sdR(B), then iw-sdR(B) = iw-sdR(C).

Proof. Let M be an R-module and k ≥ 0.
(1) This is obtained directly from the exact sequence

ExtkR(M,B) → ExtkR(M,C) → Extk+1
R (M,A) → Extk+1

R (M,B).
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(2) This follows from the exact sequence

ExtkR(M,A) → ExtkR(M,B) → ExtkR(M,C) → Extk+1
R (M,A). □

Recall that an R-module M is called a w-flat module if the induced map
1
⊗

f : M
⊗

R A → M
⊗

R B is a w-monomorphism for any w-monomorphism
f : A → B. The concept of w-flat dimension was introduced by Fanggui Wang
and Lei Qiao in [5]. Let M be an R-module. Recall that w-fd(M) ≤ n if there
exists an exact sequence

0 → Fn → Fn−1 → · · · → F0 → M → 0,

where Fn, Fn−1, . . . , F0 are w-flat. It is clear that w-fd(M) ≤ w-sd(M) ≤
pdR(M). Some equivalent characterizations of w-split dimension are given in
[1]. For example, let M be an R-module and n be a nonnegative integer. Then
w-sd(M) ≤ n if and only if Extn+1

R (M,N) is GV-torsion for all R-modules N ,
if and only if Kn is w-split whenever there is an exact sequence 0 → Kn →
Pn−1 → · · · → P0 → M → 0 with P0, . . . , Pn−1 projective. A ring R is called a
DW ring if every ideal of R is a w-ideal. Fanggui Wang and Hwankoo Kim in [3]
show that if R is a DW ring, then the class of projective R-modules, the class
of w-split R-modules, and the class of w-projective R-modules are equivalent.
Almahdi and Assaad in [1, Proposition 3.4] built on this in the following way.
A ring R is a DW ring if and only if pdR(M) = w-sd(R) for all R-modules M ,
if and only if fdR(M) = w-fd(M) for all R-modules M .

In 2021, Almahdi and Assaad used w-split modules to give a characterization
of DW rings. For example, let R be a ring. Then R is a DW ring if and only
if every w-projective R-module is projective, if and only if every w-split R-
module is projective, if and only if every w-flat R-module is flat. Based on this
use of w-split modules to characterize DW rings, the natural question arises
whether iw-split modules can similarly characterize DW rings.

Theorem 2.17. Let R be a ring. Then the following statements are equivalent.

(1) Every w-injective R-module is injective.
(2) Every iw-split R-module is injective.
(3) R is a DW ring.

Proof. (1)⇒(2) By the definitions of w-injective modules and iw-split modules,
we can get the conclusion.

(2)⇒(3) Let J ∈ GV(R) and N = J/J2. Then JN = 0. According to
Theorem 2.10, N is an iw-split module. Now let f : J → N be the natural
homomorphism, so f(a) = ā, a ∈ J . By (2), N is an injective module. Thus
there exists a homomorphism g : R → N such that f(a) = g(a) for all a ∈ J .
Denoted by g(1) = b̄ for all b ∈ J , since b̄ = f(b) = g(b) = bg(1) = b̄2, so
g(1) = b̄ = 0̄, therefore g = 0. Since f is an epimorphism, it follows that g is
also an epimorphism. Hence N = 0, that is, J = J2. By [4, Theorem 1.8.22],
J can be generated by an idempotent element, thus J is a projective ideal.
Therefore J is a w-module, so J = Jw = R. Hence R is a DW ring.
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(3)⇒(1) Clear. □

Corollary 2.18. Let R be a DW ring and N be an R-module. Then

iw-sdR(N) = w-idR(N).

Proof. This is obtained directly from Corollary 2.5. □

3. Characterizations of semi-simple rings and Dedekind domains

In the following, we will discuss the relationships between w-split dimension
of modules and iw-split dimension of modules.

Theorem 3.1. The following statements are equivalent for a ring R and a
nonnegative integer n.

(1) w-sd(M) ≤ n for all R-modules M .
(2) iw-sd(N) ≤ n for all R-modules N .

(3) ExtkR(M,N) is GV-torsion for all R-modules M,N and for all k > n.
(4) Extn+1

R (M,N) is GV-torsion for all R-modules M,N .

Proof. (1)⇒(2) This follows from [1, Proposition 3.3] and Proposition 2.15.
(2)⇒(3) Since iw-sd(N) ≤ n for all R-modules N , then there is a resolution

of an iw-split module N

0 → N → E0 → · · · → En−1 → En → 0,

where E0, E1, . . . , En are iw-split modules. Thus when k > n, ExtkR(M,N) ∼=
Extk−n

R (M,En) for all R-modules M . Hence ExtkR(M,N) is GV-torsion.
(3)⇒(4) This is obvious.
(4)⇒(1) This follows easily from [1, Proposition 3.3]. □

The following results give new equivalent characterizations of semi-simple
rings and Dedekind domains by iw-split modules.

Theorem 3.2. The following statements are equivalent for a ring R.

(1) Every R-module is a w-split module.
(2) Every R-module is an iw-split module.
(3) R is a semi-simple ring.
(4) Every cyclic R-module is an iw-split module.

Proof. (1)⇒(2) Let M be an R-module. It follows the assumption that M is
w-split, so w-sd(M) = 0. By Theorem 3.1, iw-sd(N) = 0 for all R-modules N .
Thus every R-module is an iw-split module.

(3)⇒(1) Let N be an R-module. Since R is a semi-simple ring, then N is
injective. According to Corollary 2.4, we can get N is iw-split, thus iw-sd(N) =
0. By Theorem 3.1, w-sd(N) = 0. It follows from the definition of w-split
dimension, N is a w-split module, so every R-module is a w-split module.

(2)⇒(4) This is trivial.
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(4)⇒(3) Let M be a cyclic R-module and N be a cyclic torsion-free w-
module. By the hypothesis, N is iw-split, so Ext1R(M,N) is GV-torsion. Thus
M is w-projective. By [3, Theorem 3.15], we can get the conclusion. □

Theorem 3.3. The following statements are equivalent for a ring R.

(1) Every factor module of an iw-split module is iw-split.
(2) Every factor module of an injective module is iw-split.
(3) Every submodule of a w-split module is w-split.
(4) Every submodule of a projective module is w-split.
(5) R is hereditary.

Proof. (1)⇒(2) This is trivial.
(2)⇒(3) Let P be a w-split module and A be a submodule of P . LetN be any

R-module. Then there is an exact sequence 0 → N → E → C → 0, where E is
injective. By the hypothesis, Ext1R(A,N) ∼= Ext2R(P/A,N) ∼= Ext1R(P/A,C) is
GV-torsion, and so A is a w-split module.

(3)⇒(4) This is clear.
(4)⇒(5) It suffices to prove that R is a DW ring. Let J ∈ GV(R) and

RJ = R. Let F =
⊕

J∈GV(R) RJ and M =
⊕

J∈GV(R) J . Then F is a free R-

module, M is a submodule of F and Mw = F . It follows from the assumption
that M is w-split. By [6, Proposition 2.8], there exists I ∈ GV(R) such that
IF ⊆ M . Therefore I ⊆ J for all J ∈ GV(R). Especially, I ⊆ I2. So I is
generated by an idempotent element. Thus I is a projective ideal, therefore
I = R. Hence R has only one GV-ideal, that is R itself, By the definition of
DW rings, R is a DW ring.

(5)⇒(1) By the hypothesis, every factor module of an injective module is
injective. By Corollary 2.4, every factor module of an iw-split module is iw-
split. □

As a consequence of the statement of Theorem 3.3, we have the following
corollary.

Corollary 3.4. Let R be an integral domain. Then every factor module of an
iw-split module is iw-split if and only if R is a Dedekind domain.
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