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FREE PRODUCTS OF OPERATOR SYSTEMS

Florin Pop

Abstract. In this paper we introduce the notion of universal free prod-

uct for operator systems and operator spaces, and prove extension results

for the operator system lifting property (OSLP) and operator system local
lifting property (OSLLP) to the universal free product.

1. Introduction

For C∗-algebras, free products have long been a topic that employed almost
exclusively C∗-techniques and methods. The use of operator space methods
in relation to free products of C∗-algebras was initiated by Boca in a series of
papers [2–4], where he proved that unital, completely positive maps defined on
C∗-algebras extend canonically to the full free product of the algebras.

This paper originates in our attempt to investigate the extent to which
free products can be defined in the category of operator systems and operator
spaces, in a way that is consistent with the well-known properties from the
C∗-case.

An immediate problem that requires attention is that, in contrast with the
C∗-case, order isomorphic operator systems need not generate isomorphic C∗-
algebras, so if free products of systems are to be related in any way to C∗-free
products, the C∗-algebras generated by particular representations of operator
systems are not helpful. A more subtle issue is that operator systems are not
assumed to be uniformly closed while, as we shall see, closure is important
when discussing lifting.

Despite these constraints, we will define a notion of free product that is
suitable for the category of operator systems, and will prove lifting results for
free products of operator systems similar to the results known for free products
of C∗-algebras.

The paper is organized as follows. In Section 2 we introduce the universal
free product of a family of operator systems, completed with the appropriate
counterpart for operator spaces in Section 4. Section 5 is devoted to preliminary
results needed in Section 6 to prove the main results: the universal free product
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of a countable family of separable operator systems with the operator system
lifting property (OSLP) has the OSLP and the universal free product of an
arbitrary family of operator systems with the operator system local lifting
property (OSLLP) has the OSLLP.

2. The universal free product of operator systems

In this section we introduce the notion of free product for operator sys-
tems. Recall that a concrete operator system is a unital, selfadjoint subspace
of B(H). Operator systems are not assumed to be closed in any topology. We
should mention that Arveson’s extension theorem, originally stated for norm-
closed operator systems, also holds in this more general situation, as shown in
Theorem 7.5 in [10].

Given operator systems E ⊂ B(H) and F ⊂ B(K), it is perhaps tempt-
ing to consider the free product of the two C∗-algebras generated by E and,
respectively, F. However, this approach turns out to be incorrect, at least for
one critical reason. In the C∗-algebra situation, if A1 and A2 are isomorphic,
then A1 ∗B and A2 ∗B are isomorphic. But for operator systems, it is possible
that E1 ⊂ B(H) and E2 ⊂ B(K) are completely order isomorphic, yet the
C∗-algebras generated by E1 and E2 are not isomorphic. This may preclude
the isomorphism between E1 ∗ F and E2 ∗ F, where F is some other opera-
tor system. Indeed, the operator system M2(C) acting on a two-dimensional
Hilbert space generates a nuclear C∗-algebra, while the universal C∗-algebra
of the system M2(C) is not even exact ([8]).

To remedy this shortcoming, we will use the universal C∗-algebra of an
operator system, introduced by Kirchberg and Wassermann. In [8] they proved
that, given an operator system E, there exists a C∗-algebra C∗u(E), unique up
to isomorphism, satisfying

1. There exists a unital completely isometric map ι : E → C∗u(E).
2. C∗u(E) is the C∗-algebra generated by ι(E).
3. If θ : E → A is a unital completely positive (u.c.p.) map with values in a

C∗-algebra A, then there exists a ∗-homomorphism π : C∗u(E) → A such that
θ = π ◦ ι.

We note that ι is the direct sum of all u.c.p. maps from E with values in
some Mn(C). In the situation when we deal with a family of operator systems
(Ei)i∈I , in order to avoid any possible confusion we will use the notation ιi(Ei)
instead of ι(Ei).

It can be proved ([8]) that, if E and F are completely order isomorphic,
then C∗u(E) and C∗u(F ) are ∗-isomorphic and the ∗-isomorphism between them
induces a complete order isomorphism between ι(E) and ι(F ).

Definition 2.1. If (Ei)i∈I is a family of operator systems, we define the uni-
versal free product ∗ui∈I Ei to be the linear span of the operators of the form

x1x2 · · · xn, n ∈ N, xj ∈ ιij (Eij ), i1 6= i2 6= · · · 6= in
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inside the full free product C∗-algebra ∗i∈I C∗u(Ei).

Remark 2.2. (1) Note that ιi(1Ei
) = ιj(1Ej

) = 1, ∀i, j ∈ I.
(2) As a vector space, ∗ui∈I Ei is the quotient of the vector space which has

as basis the set

B = {x1x2 · · · xn, n ∈ N, xj ∈ ιij (Eij ), i1 6= i2 6= · · · 6= in}
by the subspace generated by the relations of the form

x1 · · · xj−1(λx
(0)
j + µx

(1)
j )xj+1 · · · xn

= λx1 · · · xj−1x(0)j xj+1 · · · xn + µx1 · · · xj−1x(1)j xj+1 · · · xn (λ, µ ∈ C)

and
xj = 1⇒ x1 · · · xn = x1 · · · xj−1xj+1 · · · xn.

(3) No assumption is made about the norm closure of the universal free
product, as no assumption of this nature is made about the En’s.

(4) Note that, if F ⊂ ∗ui∈I Ei is a finite dimensional subsystem, then there
exist a finite subset J ⊂ I and finite dimensional subsystems Fj ⊂ Ej , j ∈ J,
such that F ⊂ ∗j∈J ιj(Fj).

Next, we present the universality property of the universal free product.

Proposition 2.3. If (Ei)i∈I is a family of operator systems, A is a unital
C∗-algebra, and ϕi : Ei → A are u.c.p. maps, then there exists a u.c.p. map
Φ : ∗ui∈IEi → A such that Φ|Ei = ϕi for all i ∈ I.

Proof. Let πi : C∗u(Ei) → A be the ∗-homomorphisms satisfying πi ◦ ιi = ϕi
and consider the ∗-homomorphism ∗i∈I πi : ∗i∈I C∗u(Ei)→ A. The restriction
of this ∗-homomorphism to ∗i∈I ιi(Ei) = ∗ui∈I Ei is the desired map. �

Remark 2.4. We must emphasize that the notion of free product defined in this
section is exclusively an operator system object and does not extend the classic
notion for C∗-algebras. In particular, if A and B are C∗-algebras, the C∗-free
product A ∗B is very different from the universal free product A ∗uB, when A
and B are viewed as operator systems. In spite of this substantial difference,
there is a close relationship between the two notions, as the next result illus-
trates. While it represents no more than a simple remark, its consequences are
extremely important.

Proposition 2.5. If (Ei)i∈I is a family of operator systems, then ∗ui∈I Ei, the
uniform closure of ∗ui∈I Ei, is equal to the free product C∗-algebra ∗i∈I C∗u(Ei).

Proof. It suffices to prove that the uniform closure of ∗ui∈I Ei contains all
operators of the form

a1a2 · · · an, n ∈ N, aj ∈ C∗u(Eij ), aj ≥ 0, i1 6= i2 6= · · · 6= in.

Consider an operator of the form

x1x2 · · · xn, n ∈ N, xj ∈ ιij (Eij ), i1 6= i2 6= · · · 6= in
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and let b ∈ ιi2(Ei2) be a nonzero operator. Then yk = x∗1(I + b
k )x1x2 · · · xn ∈

∗ui∈I Ei and
lim
k→∞

yk = x∗1x1x2 · · · xn.

It follows that ∗ui∈I Ei contains all operators of the form a1x2 · · · xn, a1 ∈
C∗u(E1), xj ∈ ιij (Eij ), j ≥ 2. The argument continues in a similar fashion,

ending up showing that a1a2 · · · an ∈ ∗ui∈I Ei. The conclusion follows. �

3. Extending completely bounded maps to free products of
C∗-algebras

Boca’s theorem [2] states that, if Ai, i ∈ I, are unital C∗-algebras and
ϕi : Ai → B(H) are unital completely positive maps, then there exists a
unital completely positive map Φ : ∗i∈I Ai → B(H) such that Φ|Ai

= ϕi. In
this section we obtain a version of Boca’s result for completely bounded maps
(Proposition 3.3). We must point out that, beyond its existence, we cannot
say much more about the extended completely bounded map in Proposition
3.3. This is in stark contrast with the nice multiplicative properties of Boca’s
extended u.c.p. maps (see [2] for more details).

Let A be a unital C∗-algebra and ϕ : A→ B(H) a complete contraction such
that ϕ(I) = 0. It is well known [10] that ϕ(x) = Sπ(x)T , where π : A→ B(K)
is a unital ∗-homomorphism and T : H → K, S : K → H are such that
||S||, ||T || ≤ 1 and ST = 0. Then(

π(x) π(x)
π(x) π(x)

)
=

(
1√
2

1√
2

1√
2

1√
2

)(
π(x) 0

0 π(x)

)( 1√
2

1√
2

1√
2

1√
2

)

and

(
S 0
0 T ∗

)(
π(x) π(x)
π(x) π(x)

)(
S∗ 0
0 T

)
=

(
Sπ(x)S∗ Sπ(x)T
T ∗π(x)S∗ T ∗π(x)T

)
.

Note that for x = I the latter matrix is equal to(
SS∗ 0

0 T ∗T

)
.

Since both S and T are contractions, we can add a small completely positive
piece to make it a unital completely positive map (u.c.p.). If θ is a state on A,
we add (

(I − SS∗)θ(x) 0
0 (I − T ∗T )θ(x)

)
and thus obtain

Ψ(x) =

(
Sπ(x)S∗ + (I − SS∗)θ(x) Sπ(x)T

T ∗π(x)S∗ T ∗π(x)T + (I − T ∗T )θ(x)

)
which is a unital c.p. map defined on A and taking values in M2(B(H)).

We just proved:

Lemma 3.1. If ϕ : A → B(H) is a completely contractive map such that
ϕ(I) = 0, then ϕ is the upper right corner of a u.c.p. map Ψ : A→M2(B(H)).
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We can now apply Boca’s theorem. By taking free products of u.c.p. maps
and then compressing to the upper right corner, we obtain:

Lemma 3.2. If Ai, i ∈ I, are unital C∗-algebras and ϕi : Ai → B(H) are com-
plete contractions such that ϕi(I) = 0, then there exists a complete contraction
Φ : ∗i∈I Ai → B(H) such that Φ|Ai

= ϕi for all i ∈ I.

We arrived at the main result of this section.

Proposition 3.3. If (Ai)i∈I is a family of unital C∗-algebras and ϕi : Ai →
B(H) are completely bounded maps such that sup{||ϕi||cb : i ∈ I} < ∞ and
ϕi(I) = T for some T ∈ B(H) and all i ∈ I, then there exists a completely
bounded map Φ : ∗i∈I Ai → B(H) such that Φ|Ai

= ϕi for all i ∈ I. In addition,
||Φ||cb ≤ 3 sup{||ϕi||cb : i ∈ I}.

Proof. Denote α = sup{||ϕi||cb : i ∈ I}. Take θi to be a state on Ai and consider
the maps ψi(x) = (2α)−1(ϕi(x) − Tθi(x)). These maps are complete contrac-
tions with ψi(I) = 0, so Lemma 3.2 applies to obtain a complete contraction
Ψ : ∗i∈I Ai → B(H) satisfying Ψ|Ai = ψi. If we consider the free product state
Θ = ∗i∈I θi on ∗i∈I Ai ([1]), then Φ = 2αΨ + TΘ is the desired map. �

4. Universal free products of operator spaces

If Vi ⊂ B(Hi), i ∈ I, are operator spaces, let E(Vi) be the operator systems
generated by Vi. Define ∗ui∈I Vi, the universal free product of the family (Vi)i∈I
to be the operator space ∗i∈I ιi(Vi), viewed as a subspace of ∗i∈I ιi(E(Vi)) =
∗ui∈I E(Vi) ⊂ ∗i∈I C∗u(E(Vi)). It is easy to see that, if the Vi’s are operator
systems, the previous definition agrees with the definition of the universal free
product for operator systems in Section 2. Since in the category of operator
spaces the morphisms are completely bounded maps, we will need an extension
theorem for completely bounded maps, in the spirit of Proposition 3.3.

This extension theorem, proved below, represents the universality property
of the universal free product of operator spaces.

Proposition 4.1. If (Vi)i∈I is a family of unital operator spaces and ϕi : Vi →
B(H) are completely bounded maps such that sup{||ϕi||cb : i ∈ I} < ∞ and
ϕi(I) = T for some T ∈ B(H) and all i ∈ I, then there exists a completely
bounded map Φ : ∗ui∈I Vi → B(H) such that Φ|Vi = ϕi for all i ∈ I. In addition,
||Φ||cb ≤ 3 sup{||ϕi||cb : i ∈ I}.

Proof. The maps ϕi extend to c.b. maps ψi : C∗u(E(Vi)) → B(H) with same
c.b. norm ([10]8.2). Proposition 3.3 shows that there exists a c.b. map Ψ :
∗i∈I C∗u(E(Vi)) → B(H) such that Ψ|C∗u(E(Vi)) = ϕi. The restriction of Ψ to
∗ui∈I Vi is the desired map Φ. �

5. Lifting properties of operator systems

Recall that a unital C∗-algebra A has the Lifting Property (LP) if, for every
unital completely positive (u.c.p.) map ϕ : A→ B/J, there exists a u.c.p. map



664 F. POP

ψ : A → B such that ϕ = q ◦ ψ, where q : B → B/J is the quotient map. In
[7] Kirchberg introduced the Local Lifting Property (LLP), which requires, for
ϕ : A→ B/J and a fixed, finite dimensional operator system E ⊂ A, only the
existence of a u.c.p. lifting ψ : E → B such that ϕ|E = q ◦ ψ,

If E is an operator system, E is said to have the Operator System Lifting
Property (OSLP) if, for every C∗-algebra A with a closed, two-sided ideal J,
and every u.c.p. map ϕ : E → A/J, there exists a u.c.p map ψ : E → A such
that ϕ = q ◦ ψ, where q : A→ A/J is the quotient map.

If E is an operator system, E is said to have the Operator System Local
Lifting Property (OSLLP) if, for every unital C∗-algebra A with a closed, two-
sided ideal J, every finite dimensional operator subsystem E0 ⊂ E, and every
u.c.p. map ϕ : E → A/J, there exists a u.c.p map ψ : E0 → A such that
ϕ|E0

= q ◦ ψ.
It is easy to see that, if E is separable, the algebras A in the above definitions

can be taken to be separable. It is also clear that a C∗-algebra has the LP (or
LLP) if and only if it has the OSLP (or OSLLP, respectively) as an operator
system.

We continue this section by highlighting the very natural connection between
an operator space and its universal C∗-algebra. First, we prove that E has the
OSLLP if and only if C∗u(E) has the LLP. For this purpose we will need two
preliminary results.

Lemma 5.1. Let E ⊂ F be finite dimensional operator systems and ϕ : E →
B(`2) and ψ : F → B(`2) be u.c.p. maps such that (ϕ − ψ)(E) ⊂ K(`2).
Then, for any given ε > 0, there exists a u.c.p. map ψ0 : F → B(`2) such that
(ϕ− ψ0)(E) ⊂ K(`2) and ||(ϕ− ψ0)|E || < ε.

Proof. The proof is almost identical to the proof of Lemma 9 in [4]. If (en)
denotes a quasicentral approximate unit for K(`2), then we can take ψ0 =
(I − e)1/2ψ(I − e)1/2 + e1/2ϕ̃e1/2, where ϕ̃ is any Arveson extension of ϕ to F,
and e is equal to en for some large enough value of n. �

Proposition 5.2. Let E be a closed, separable operator system and (En) an
increasing sequence of finite dimensional operator subsystems of E such that
E = ∪En. Let ϕ : E → B(`2)/K(`2) be a u.c.p. map and suppose that there
exist u.c.p. maps ϕ : En → B(`2) such that q ◦ ϕn = ϕ|En , where q is the
quotient map. Then there exists a u.c.p. map ψ : E → B(`2) satisfying q ◦ψ =
ϕ.

Proof. By taking into account Lemma 5.1, we set ψ1 = ϕ1 and, for every n ≥ 2,
we let ψn : En → B(`2) be a u.c.p. map such that ||(ψn+1 − ψn)|En || < 2−n

and (ψn+1 − ψn)(En) ⊂ K(`2). It follows that the sequence ψn(x) is Cauchy
for every x ∈ ∪En, so its limit defines a u.c.p. map ψ : E → B(`2) satisfying
q ◦ ψ = ϕ. �
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We conclude with the two results about universal C∗-algebras announced at
the beginning of the section. The first one refers to the Local Lifting Property,
while the second refers to the Lifting Property.

Proposition 5.3. An operator system E has the OSLLP if and only if C∗u(E)
has the LLP.

Proof. Suppose that E has the OSLLP, the other direction being immediate.
Fix a finite dimensional subsystem F ⊂ C∗u(E). We will assume first that F ⊂
C∗u(E0), where E0 ⊂ E is a finite dimensional subsystem, and note that C∗(E0)
is canonically isomorphic to C∗u(E0). Let ϕ : C∗u(E)→ B/J be a u.c.p. map into
a quotient C∗-algebra where the quotient map is q : B → B/J. Consider also
a ∗-epimorphism ρ : C∗(FI) → C∗u(E). Since E has the OSLLP, there exists a
u.c.p. map α : E0 → C∗(FI) such that ρ ◦ α = id|E0 . By universality, the map
α extends to a ∗-homomorphism θ : C∗u(E0) → C∗(FI) such that θ(x) = α(x)
for all x ∈ E0. It follows that the ∗-homomorphism ρ ◦ θ will be the identity
map on E0. Since E0 generates C∗u(E0) as a C∗-algebra, we get that ρ◦ θ is the
identity map on C∗u(E0). Since C∗(FI) has the LLP, there exists a u.c.p. map
β : θ(F ) → B such that q ◦ β = ϕ ◦ ρ|θ(F ). Then (β ◦ θ)|F is the desired local
lifting of ϕ.

In general, F is contained in the uniform closure of an increasing sequence
of finite dimensional subsystems (Fn) of E with the property that each Fn is
contained in some C∗(En), for some finite dimensional subsystem En ⊂ E.

Let ϕ : C∗u(E) → B(`2)/K(`2) be a u.c.p. map with values in the Calkin
algebra. By the first part of the proof, each Fn has a lifting ψn : Fn → B(`2)
such that q ◦ ψn = ϕ|Fn . We apply Proposition 5.2 to obtain a u.c.p. map
ψ : ∪Fn → B(`2) such that q ◦ ψ = ϕ|∪Fn

. The restriction of ψ to F is the
desired lifting.

We proved that ϕ : C∗u(E) → B(`2)/K(`2) lifts locally. By a theorem of
Ozawa ([9], see also [13]) it follows that C∗u(E) has the LLP. �

We take a moment to note, in retrospect, that in the second part of the
proof we had to narrow our argument to maps with values in the Calkin algebra
and then rely on Ozawa’s theorem because in Lemma 5.1 we needed to apply
Arveson’s extension theorem which, in turn, required an injective range, like
B(`2).

The following is the analogue result for the OSLP and LP.

Proposition 5.4. A separable operator system E has the OSLP if and only if
C∗u(E) has the LP.

Proof. Suppose that E (therefore ι(E)) has the OSLP. Since E (and thus
C∗u(E)) is separable, let π : C∗(F∞) → C∗u(E) be a ∗-epimorphism. By hy-
pothesis, there exists a u.c.p. map α : ι(E) → C∗(F∞) such that π ◦ α is the
identity map on ι(E) and, by universality, α extends to a ∗-homomorphism
β : C∗u(E) → C∗(F∞). It follows that π ◦ β is a ∗-homomorphism of C∗u(E)
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which acts identically on ι(E), a generating set, therefore π ◦ β(x) = x for all
x ∈ C∗u(E). Finally, let ϕ : C∗u(E) → B/J be a u.c.p. map. Since C∗(F∞) has
the LP, there exists a u.c.p. map ρ : C∗(F∞) → B such that q ◦ ρ = ϕ ◦ π,
where q : B → B/J is the quotient map. Then ρ ◦ β is the desired lifting of ϕ.

Conversely, suppose that C∗u(E) has the LP and let ϕ : ι(E) → B/J be a
u.c.p. map. By universality, ϕ extends to a ∗-homomorphism θ : C∗u(E)→ B/J.
By hypothesis, there exists a u.c.p. map α : C∗u(E) → B satisfying q ◦ α = θ.
Then the restriction of α to ι(E) is the desired lifting of ϕ. �

We continue with some remarks on operator systems and their norm closures,
from the viewpoint of the OSLP.

Proposition 5.5. An operator system E ⊂ B(H) has the OSLP if and only if
E, the uniform closure of E, has the OSLP.

Proof. Suppose that E has the OSLP. If ϕ : E → A/J is a u.c.p. map, denote
ϕ0 = ϕ|E . By hypothesis, there exists a u.c.p. map α0 : E → A such that
q ◦α0 = ϕ0, where q : A→ A/J is the quotient map. If α denote the extension
by continuity of α0 to E, it is easy to see that q ◦ α = ϕ.

Conversely, if E has the OSLP and ϕ : E → A/J is a u.c.p. map, let
Φ : E → A/J be the extension of ϕ by continuity. By hypothesis, there exists
a u.c.p. map α : E → A such that q ◦ α = Φ. If α0 is the restriction of α to E,
then q ◦ α0 = Φ|E = ϕ. �

At this stage we need to recall some basic facts about tensor products of
operator systems. We refer the reader to [5,6,12] for more details on this topic.

(1) The minimal tensor product min. If S ⊂ B(H) and T ⊂ B(K) are
operator systems acting on the Hilbert spaces H, respectively K, then S⊗minT
is the operator system arising from the natural inclusion of S⊗T into B(H⊗K).

(2) The maximal tensor product max [5] is the operator system structure
on S ⊗ T obtained from the Archimedeanization of the matrix order given by
positive cones

Dn = {A∗(P ⊗Q)A : A ∈Mn,km(C), P ∈Mk(S)+, Q ∈Mm(T )+} .
(3) The commuting tensor product “c” was introduced in [10] (where it was

referred to as max). If θi : Si → B(H) are u.c.p. maps with commuting ranges,
we have a well-defined map θ1⊗θ2 : S1⊗S2 → B(H). For (xij) ∈Mn(S1⊗S2),
we set

||(xij)|| = sup{||(θ1 ⊗ θ2)(xij)|| : θk : Sk → B(H), k = 1, 2}
where θ1 and θ2 are u.c.p. maps with commuting ranges and H is an arbitrary
Hilbert space.

Two important facts were proved in [5]: first, S ⊗c T ⊂ C∗u(S)⊗max C
∗
u(T ),

which shows in particular that if A is a C∗-algebra, then in the definition of
S⊗cA the u.c.p. maps θ2 pertaining to A can be chosen to be ∗-monomorphisms
(we identified S and ι(S)). The second result is that if A is a C∗-algebra, then
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S ⊗c A = S ⊗max A. We will, therefore, use the notation “max” when one of
the operator systems is a C∗-algebra.

Our next goal is to prove an analogue of Proposition 5.5 for the OSLLP. We
will need the following technical result.

Proposition 5.6. If E is an operator system and A is a C∗-algebra, then
E ⊗min A = E ⊗max A if and only if E ⊗min A = E ⊗max A.

Proof. (⇒) Fix Ei ∈ E and ai ∈ A, 1 ≤ i ≤ n, and ε > 0. Choose ei ∈ E to
satisfy ||ei − Ei|| < ε/nmax ||ai||. There exist a Hilbert space H, a u.c.p. map
ϕ : E → B(H) and a ∗-monomorphism π : A→ B(H) such that the ranges of
ϕ and π commute and ||

∑
Ei ⊗ ai||max < ||

∑
ϕ(Ei)π(ai)||+ ε. We have

||
∑

Ei ⊗ ai||max < ||
∑

ϕ(Ei)π(ai)||+ ε

≤ ||
∑

ϕ(ei)π(ai)||+ 2ε

≤ ||
∑

ei ⊗ ai||max + 2ε = ||
∑

ei ⊗ ai||min + 2ε

≤ ||
∑

Ei ⊗ ai||min + 3ε.

(⇐) There exist a Hilbert space H, a u.c.p. map ϕ : E → B(H), and a
∗-homomorphism π : A→ B(H) such that the ranges of ϕ and π commute and

||
∑

ei ⊗ ai||max < ||
∑

ϕ(ei)π(ai)||+ ε.

Denote by ϕ̃ the extension by continuity of ϕ to E. Clearly the ranges of ϕ̃ and
π commute, so we have

||
∑

ei ⊗ ai||max < ||
∑

ϕ(ei)π(ai)||+ ε = ||
∑

ϕ̃(ei)π(ai)||+ ε

≤ ||
∑

ei ⊗ ai||E⊗maxA
+ ε = ||

∑
ei ⊗ ai||E⊗minA

+ ε

= ||
∑

ei ⊗ ai||min + ε.

Since ε was arbitrary, the conclusion follows. �

Corollary 5.7. An operator system E ⊂ B(H) has the OSLLP if and only if
E has the OSLLP.

Proof. By Proposition 8.5 in [6], E has the OSLLP if and only if E ⊗min

B(H) = E ⊗max B(H). The conclusion follows if we apply this to A = B(H)
in Proposition 5.6. �

6. Lifting properties of universal free products

In [11] Pisier proved that the free product of a family of unital C∗-algebras
with the LLP has the LLP as well. While not stated specifically, the correspond-
ing result for LP can be shown to hold true in the case of a countable family
of separable C∗-algebras. For completeness, we prove this fact in Proposition
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6.1. The analogue results for operator systems will follow as consequences. We
recall from Proposition 2.5 that ∗ui∈I Ei = ∗i∈I C∗u(Ei).

Proposition 6.1. If (Ai)i∈I is a countable family of separable C∗-algebras with
the LP, then ∗i∈IAi has the LP.

Proof. Since the Ai’s are all separable, so is ∗i∈IAi, so there exists a ∗-epi-
morphism π : C∗(F∞) → ∗i∈IAi. Since the Ai’s have the LP, there exist
u.c.p. maps ϕi : Ai → C∗(F∞) such that π ◦ ϕi = id|Ai

for all i ∈ I. Boca’s
theorem ensures the existence of a u.c.p. map Φ : ∗i∈IAi → C∗(F∞) such that
π ◦Φ = id|∗i∈IAi

. Finally, let θ : ∗i∈IAi → B/J be a u.c.p. map into a quotient
C∗-algebra B/J with quotient map q : B → B/J. Since C∗(F∞) has the LP,
there exists a lifting α : C∗(F∞)→ B such that q ◦α = θ ◦π. Then α ◦Φ is the
desired lifting of θ. �

Corollary 6.2. If (Ei)i∈I is a countable family of separable operator systems
with the OSLP, then ∗ui∈IEi has the OSLP.

Proof. If the operator systems (Ei) have the OSLP, then C∗u(Ei) have the LP
by Proposition 5.4, and therefore, by Proposition 6.1, so does ∗i∈I C∗u(Ei).
Proposition 2.5 then shows that ∗ui∈I Ei has the OSLP, therefore ∗ui∈I Ei has
the OSLP by Proposition 5.5. �

We arrived at the other main result of this section.

Proposition 6.3. If (Ei)i∈I is a family of operator systems with the OSLLP,
then ∗ui∈IEi has the OSLLP.

Proof. If the operator systems Ei have the OSLLP, then the algebras C∗u(Ei)
have the LLP by Proposition 5.3. It follows that ∗i∈I C∗u(Ei) has the LLP by
Theorem 1.11 in [11]. This implies, by Proposition 2.5, that ∗ui∈I Ei has the
OSLLP, therefore so does ∗ui∈I Ei by Corollary 5.7. �
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