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A DECOMPOSITION THEOREM FOR UTUMI AND

DUAL-UTUMI MODULES
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Abstract. We show that if M is a Utumi module, in particular if M

is quasi-continuous, then M = Q⊕K, where Q is quasi-injective that is
both a square-full as well as a dual-square-full module, K is a square-free

module, and Q & K are orthogonal. Dually, we also show that if M is a
dual-Utumi module whose local summands are summands, in particular

if M is quasi-discrete, then M = P ⊕ K where P is quasi-projective

that is both a square-full as well as a dual-square-full module, K is a
dual-square-free module, and P & K are factor-orthogonal.

1. Preliminaries

A module Y is called a square if Y ∼= X ⊕ X for some module X. A
module M is called square-free if it does not contain a non-zero square. A
submodule X of a module M is called a square-root in M if X ⊕ X embeds
in M . The module M is called square-full if every non-zero submodule of
M contains a non-zero square-root. A well-known result of Mohamed and
Müller, [8, Theorem 2.37], asserts that every quasi-continuous module M has
a decomposition M = M1 ⊕M2, unique up to superspectivity, such that:

(1) M1 is square-free;
(2) M2 is square-full and quasi-injective;
(3) M1 and M2 are orthogonal.

The notion of square-free was dualized in [1] as follows: a right R-module
M is called dual-square-free if M has no proper submodules A and B with
M = A + B and M/A ∼= M/B. Equivalently, [7], if L is a factor module of
M such that L ∼= N ⊕ N for some module N , then N = 0. Subsequently, a
thorough investigation of dual-square-free modules was carried out in [2].

In [6], the notion of factor-square-full modules was introduced and a dual-
ization of the aforementioned result of Mohamed and Müller was established.
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According to [6], a submodule Y ⊆ M is called dual-square-root if there is
an epimorphism f : M → (M/Y )2, where (M/Y )2 := (M/Y ) ⊕ (M/Y ). A
module M is called factor-square-full if, every proper submodule X of M is
contained in a proper dual-square-root Y of M . It was shown in [6, Proposi-
tion 3.4 and Theorem 3.7] that every quasi-discrete module M is a direct sum
M1⊕M2 of a factor-square-full module M1 and a dual-square-free module M2,
which are factor orthogonal. Moreover, such a decomposition is unique up to
isomorphism and the module M1 is quasi-projective.

In this paper we show that if M is a Utumi module (U -module, for short),
then M = Q ⊕ K where Q is quasi-injective that is both a square-full as
well as a dual-square-full module, K is a square-free module, and Q and K
are orthogonal. In particular, such a decomposition holds for quasi-continuous
modules. Dually, we also show that if M is a Dual-Utumi module (DU -module,
for short) whose local summands are summands, then M = P ⊕ K, where
P is quasi-projective that is both a square-full as well as a dual-square-full
module, K is a dual-square-free module, and P & K are factor-orthogonal. In
particular, such a decomposition holds for quasi-discrete modules. Our results
may be considered as an improvement of the work on quasi-discrete modules
in [6].

Let’s recall first some definitions. According to [3], the notion of a U -
module was introduced as a non-trivial and simultaneous generalization of
quasi-continuous, square-free and automorphism-invariant modules, where a
right R-module M is called a U -module if, whenever A and B are submodules
of M with A ∼= B and A ∩ B = 0, there exist two summands K and T of M
such that A ⊆ess K, B ⊆ess T and K ⊕ T ⊆⊕ M . Dually, in [4], the notion of
DU -modules was introduced as a strict and simultaneous generalization of the
quasi-discrete, pseudo-discrete and dual-square-free modules. As defined in [4],
a right R-module M is called a DU -module if, for any two proper submodules
A and B of M with M/A ∼= M/B and A+B = M , there exist two summands
K and L of M such that A lies over K, B lies over L and K ∩ L ⊆⊕ M . For
the definitions of quasi-continuous, quasi-discrete, discrete, quasi-injective, and
quasi-projective, we refer the reader to the textbooks [8] and [9].

Throughout, all rings R are associative with unity and all modules are uni-
tary R-modules. For a module M , we use rad(M), E(M) and End(MR) to
denote the Jacobson radical, the injective hull and the endomorphism ring of
M , respectively. If M = R, we write J(R) = rad(R). We write N ⊆M if N is
a submodule of M , N ⊆ess M if N is an essential submodule of M , N ⊆⊕ M
if N is a direct summand of M , and N �M if N is a small submodule of M .
A submodule N of M is called proper if N $ M . A submodule N of a right
R-module M is said to lie over a direct summand of M if there is a decompo-
sition M = M1⊕M2 with M1 ⊆ N and N ∩M2 �M . Furthermore, two right
R-modules M and N are called orthogonal, if they do not contain non-zero
isomorphic submodules. Dually, M and N are called factor orthogonal if no
non-zero factor of M is isomorphic to a factor of N .
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2. Results

Lemma 2.1 ([3, Theorem 3.13]). If M is a U -module, then M = Q⊕T , where

(1) Q is a quasi-injective module;
(2) Q = A⊕B⊕D, where A ∼= B and D is isomorphic to a direct summand

of A⊕B;
(3) T is a square-free module;
(4) T is Q-injective, and
(5) Q and T are orthogonal.

Recall that a local summand of a module M is a direct sum L := ⊕i∈INi of
submodules of M such that ⊕i∈FNi is a summand of M for any finite subset
F of I.

Lemma 2.2 ([4, Theorem 4.4]). Let M be a DU -module whose local summands
are summands. Then M = Q⊕ P , where

(1) Q is a DSF -module;
(2) Q = ⊕λ∈ΛQλ, a direct sum of pairwise non-isomorphic indecomposable

modules;
(3) P = C ⊕A⊕B is a quasi-projective and discrete module with A ∼= B,

and C is isomorphic to a direct summand of A⊕B;
(4) Q is P -projective;
(5) P and Q are factor-orthogonal.

Lemma 2.3. If M = A⊕B ⊕C with A
f∼= B, and C is isomorphic to a direct

summand of A ⊕ B, then M is both a square-full as well as a dual square-full
module.

Proof. First we show that M is square-full. Let 0 6= X ⊆ M = (A ⊕ B) ⊕ C
and suppose that Q =: X ∩ A 6= 0. Therefore, Q ∼= f(Q) with Q ∩ f(Q) = 0.
This means that Q is a non-zero square root embedded in M . Similarly, if
S = X ∩ B 6= 0, then S is a non-zero square root embedded in M . Now,
suppose that E =: X ∩ C 6= 0, and let σ : C −→ A ⊕ B be an embedding.
Clearly, E ∼= σ(E) with E ∩ σ(E) = 0, and so E is a non-zero square root
embedded in M . Therefore, it remains to consider the case when X ∩ A =
X ∩ B = X ∩ C = 0. By [8, Lemma 1.31], X and one of A, B or C have
non-zero isomorphic submodules. Without loss of generality, let X ′ ⊆ X and
A′ ⊆ A be such that X ′ ∼= A′. Inasmuch as X ′ ∩ A′ = 0, we infer that X ′ is a
square-root in M . This shows that M is a square-full module. Next, we show
that M is dual-square-full. Let X be a proper submodule of M . Clearly, we
have the following epimorphism:

M → A⊕B ∼= B ⊕B
∼= M/(A⊕ C)⊕M/(A⊕ C)→M/(A+X+C)⊕M/(A+X+C).

Now, if Y := A+X+C 6= M , then Y is a proper factor-square-full submodule
containing X. Otherwise, suppose that Y := A + X + C = M . In this case
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M/(X + C) ∼= A/ (A ∩ (X + C)), and we have the following epimorphism:

M → A⊕B ∼= A⊕A→ A/ (A ∩ (X + C))⊕A/ (A ∩ (X + C))

∼= M/(X + C)⊕M/(X + C).

Now, if X + C 6= M , then X + C is a proper factor-square-full submodule
containing X. If M = X + C, then by the hypothesis, C ∼= D ⊆⊕ A⊕B for a
submodule D ⊆M , and we have the following epimorphism:

M = A⊕B⊕C → D⊕C ∼= C⊕C → C/(X∩C)⊕C/(X∩C) ∼= M/X⊕M/X.

In this case X is a proper factor-square-full submodule. This shows that M
is dual-square-full, completing the proof. �

Now, the next two results are immediate consequences of Lemma 2.1, Lemma
2.2 and Lemma 2.3. Recall first that a module M is said to satisfy the C1-
condition if every submodule of M is essential in a direct summand. M is
said to satisfy the C3-condition if the sum of any two summands of M with
zero intersection is a summand of M . A module is called quasi-continuous if
it satisfies both the C1- and C3-conditions. Moreover, a module M is called
automorphism-invariant (auto-invariant) if it is invariant under any automor-
phism of its injective hull.

Theorem 2.4. If M is a U -module, then M = Q ⊕ K, where Q is quasi-
injective that is both a square-full as well as a dual-square-full module, K is a
square-free module, and Q and K are orthogonal. In particular, such a decom-
position holds for both quasi-continuous and auto-invariant modules.

A module M is said to satisfy the D1-condition if every submodule N of
M lies over a direct summand of M . The module M is said to satisfy the
D3-condition if M1 and M2 are direct summands of M , and M = M1 + M2,
then M1 ∩M2 is a direct summand of M . A module is called quasi-discrete if
it satisfies both the D1- and D3-conditions.

Theorem 2.5. Let M be a DU -module whose local summands are summands.
Then M = P⊕K, where P is quasi-projective and discrete that is both a square-
full as well as a dual-square-full module, K is a dual-square-free module, and
P and K are factor-orthogonal. In particular, such a decomposition holds for
quasi-discrete modules.

A module M is called H-supplemented [6] if, for any submodule X ⊆ M ,
there exist a submodule Y ⊆ M and a decomposition M = A ⊕ B such that
X ⊆ Y , A ⊆ Y , Y/X � M/X and Y/A � M/A. If A and B are modules,
then A is called radical-B-projective [6] if, for every homomorphism f : A→ X
and every epimorphism g : B → X there exists a homomorphism h : A → B
such that Im(f − gh) � X. A module M is called quasi-radical-projective if
M is radical-M -projective.
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Theorem 2.6. Let M be an H-supplemented module that satisfies the D3-
condition, then M = Q⊕P , where Q is a dual-square-free module, P is a quasi-
radical-projective module that is both a square-full as well as a dual-square-full
module, and P and Q are factor-orthogonal.

Proof. It follows from Lemma 2.3 and the proof of Proposition 2.16 in [5]. �

References

[1] N. Ding, Y. Ibrahim, M. Yousif, and Y. Zhou, D4-modules, J. Algebra Appl. 16 (2017),

no. 9, 1750166, 25 pp. https://doi.org/10.1142/S0219498817501663

[2] Y. Ibrahim and M. Yousif, Dual-square-free modules, Comm. Algebra 47 (2019), no. 7,
2954–2966. https://doi.org/10.1080/00927872.2018.1543429

[3] , Utumi modules, Comm. Algebra 46 (2018), no. 2, 870–886. https://doi.org/

10.1080/00927872.2017.1339064

[4] , Dual Utumi modules, Comm. Algebra 47 (2019), no. 9, 3889–3904. https:

//doi.org/10.1080/00927872.2019.1572166

[5] I. Kikumasa and Y. Kuratomi, On H-supplemented modules over a right perfect ring,
Comm. Algebra 46 (2018), no. 5, 2063–2072. https://doi.org/10.1080/00927872.

2017.1372451

[6] I. Kikumasa, Y. Kuratomi, and Y. Shibata, Factor square full modules, Comm. Algebra
49 (2021), no. 6, 2326–2336. https://doi.org/10.1080/00927872.2020.1870997
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