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ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE

EQUATIONS OF FERMAT TYPE

Peichu Hu, Wenbo Wang, and Linlin Wu

Abstract. In this paper, we extend some previous works by Liu et al.

on the existence of transcendental entire solutions of differential-difference
equations of Fermat type. In addition, we also present a precise descrip-

tion of the associated entire solutions.

1. Introduction and main results

Gross [3] proved that the functional equation of Fermat type

(1) f(z)n + g(z)n = 1

has no transcendental meromorphic solutions f(z) and g(z) when n ≥ 4. Mon-
tel [12] showed that (1) has no transcendental entire solutions f(z) and g(z)
when n ≥ 3. Iyer [2] concluded that when n = 2, entire solutions of (1) have
only the following forms

f(z) = sin(h(z)), g(z) = cos(h(z))

except for interchangeable, where h(z) is any entire function.
In 1970, Yang [15] investigated the following functional equation of Fermat

type

(2) a(z)f(z)n + b(z)g(z)m = 1,

where a, b are small functions with respect to f , that is, Nevanlinna’s charac-
teristic function T (r, α) of any α ∈ {a, b} satisfies T (r, α) = S(r, f) in which
S(r, f) denotes a real function of r with the property

S(r, f) = o(T (r, f)), r →∞
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possibly outside a set of values r of finite linear measure (see e.g., [7] and [17]),
and where m, n are positive integers satisfying

1

m
+

1

n
< 1,

by proving that there are no non-constant entire solutions f and g satisfying
(2). Yang’s result shows that (2) has no non-constant entire solutions under
the assumption m > 2, n > 2. However, when m = n = 2, the problem is open.

In 2007, Tang and Liao [13] extended a study work of the open problem due
to Yang and Li [16] through replacing g by f (k) to investigate entire solutions
of the following equation

(3) f(z)2 + {P (z)f (k)(z)}2 = Q(z),

where P, Q are non-zero polynomials. In 2013, Liu and Yang [11] improved a
researching result of the open problem in [9] through replacing f (k)(z) in (3)
by f(z + c), where c is a non-zero constant, by obtaining that if the following
difference equation

(4) f(z)2 + {P (z)f(z + c)}2 = Q(z)

admits a transcendental entire solution f of finite order, then P (z) ≡ ±1 and Q
reduces to a constant q, so that f(z) =

√
q sin(Az+B), where B is a constant,

A = (4k+1)π
2c , in which k is an integer.

Recall that the order of f is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
,

and the hyper-order of f is defined by

ρ2(f) = lim sup
r→∞

log log T (r, f)

log r
.

Note that the coefficients in the open problem are small functions of f , but
where P,Q are assumed to be polynomials. A natural question is that what
happens if P, Q in (3) or (4) are small functions of f?

Theorem 1.1. Let P, Q be non-zero meromorphic functions. If the equation
(4) admits a transcendental entire solution f with ρ2(f) < 1 such that P, Q are
small functions of f , then we have P 2(z)Q(z + c) = Q(z).

Corollary 1.2. Let P, Q be non-zero entire functions with ρ(Q) < 1. If the
equation (4) admits a transcendental entire solution f of ρ2(f) < 1 such that
P, Q are small functions of f , then P (z) = ±1 and Q reduces to a constant q,
so that f(z) = 1

2 (q1eaz+b+q2e−az−b), where a, b, q1, q2 are constants satisfying

ac = −πi2 + 2kπi (k ∈ Z), q1q2 = q.

It’s easy to exhibit an example to show the existence of solutions in Corol-
lary 1.2.
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Example 1.3. Take a = 1 and c = −πi2 . Then f(z) = 1
2 (ez + e−z) satisfies

the equation (4).

Obviously, Corollary 1.2 is an extension and supplement of the result due to
Liu and Yang [11], in which they proved that any transcendental entire solution
f of finite order of the differential-difference equation

(5) f(z + c)2 + f (k)(z)2 = 1

must be one of the following two cases:
(i) f(z) = ∓ sin(Aiz +Bi), A = kπi

c , A
k = ±i, where B is a constant and k

is odd;

(ii) f(z) = ± cos(Aiz + Bi), A = (2k+1)πi
2c , Ak = ±1, where B is a constant

and k is even.

In this paper, we consider a slightly general form of the equation (5). More
precisely, we get the following result.

Theorem 1.4. Let P (z), Q(z) be non-zero polynomials and set

L(f) =

k∑
j=0

bjf
(j),

where k is a positive integer, and b0, b1, . . . , bk( 6= 0) are constants. If the fol-
lowing differential-difference equation

(6) f(z + c)2 + {P (z)L(f)(z)}2 = Q(z)

admits a transcendental entire solution f with ρ2(f) < 1, then

f(z) =
1

2

(
Q1(z − c)eaz+b−ac +Q2(z − c)e−az−b+ac

)
,

where a ( 6= 0), b are constants, Q1 and Q2 are factors of Q with Q = Q1Q2.
Moreover, P (z) can be determined by one of the following conditions:

(i) P (z) must be a constant if either Q1 or Q2 is a constant;
(ii) P (z) must be a constant if either l(a) 6= 0 or l(−a) 6= 0, where l(z) =∑k
j=0 bjz

j ;

(iii) P (z) is a non-constant polynomial when l(±a) = 0 and if both Q1 and
Q2 are non-constant polynomials. Further, if either l′(a) 6= 0 or l′(−a) 6= 0
holds, we have degP = 1; otherwise degP ≥ 2.

We exhibit some examples to show the existence of solutions in Theorem 1.4.

Example 1.5. Take a = 1 and c = πi
2 . Then f(z) = i

2 (−ez + e−z) satisfies
the equation

f(z + c)2 +

{
1

2
f(z) +

1

2
f ′′(z)

}2

= 1.
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Example 1.6. Take a = 1 and c = πi
2 . Then f(z) = zez+e−z

2 satisfies the
equation

f(z + c)2 +

{
(1− πi

4
)f ′(z) + f ′′(z)− (1− πi

4
)f ′′′(z)

}2

= z +
πi

2
.

Example 1.7. Take a = 1 and c = πi
2 . Then f(z) = zez+ze−z

2 satisfies the
equation

f(z + c)2 +

{
−πi

4
f ′(z) + 2f ′′(z) +

πi

4
f ′′′(z)− f (4)(z)

}2

= (z +
πi

2
)2.

Example 1.8. Take a = 1 and c = πi
2 . Then f(z) =

(z−πi2 )ez+(z−πi2 )e−z

2
satisfies the equation

f(z + c)2 +

{
z(−1

2
f ′(z) +

1

2
f ′′′(z))

}2

= z2.

Example 1.9. Take a = 1 and c = 2πi. Then f(z) = (z−2πi)2ez+(z−2πi)2e−z
2

satisfies the equation

f(z + c)2 +

{
iz2(

1

8
f ′(z)− 1

4
f ′′′(z) +

1

8
f (5)(z))

}2

= z4.

In 2018, Zhang [18] considered existence of transcendental entire solutions
of the following equation

(7) f(z)2 + {f(z + c)− f(z)}2 = β(z)2,

where β is a small function of f, and raised a conjecture as follows:

Conjecture 1.10. If f is a transcendental entire solution of finite order of
(7) such that β is a small function of f , then β ≡ 0.

In other words, these results or conjecture consider admissible solutions (see,
e.g., [8]). In particular, Zhang [18] proved that the difference equation (7)
admits no transcendental entire functions of finite order if β is a non-zero
constant. Related to the conjecture above, we give the following theorem,
which extends a result in [10].

Theorem 1.11. If a(z), b(z) are non-zero rational functions, then

(8) f(z)2 + {a(z)f(z) + b(z)f(z + c)}2 = β(z)2

has no any transcendental entire function f with ρ2(f) < 1 such that β is a
non-vanishing small function of f under one of the following conditions:

(i) β is a non-constant periodic function of period c;
(ii) β is a non-constant entire function of finite order ρ(β) = %.

It is natural to ask whether Equation (8) has a transcendental entire function
f with ρ2(f) < 1 when β is a non-zero constant. We can get the following
theorem.
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Theorem 1.12. Suppose that a(z), b(z) are non-zero rational functions, β(6= 0)
is a constant. If (8) has a transcendental entire solution f with ρ2(f) < 1,
then a(z), b(z) reduce to constant a, b respectively, and satisfy a2 +1 = b2, and
f = β sin(Az +B), where B is a constant and eiAc = a−i

−b .

Example 1.13. Take A = 1, B = 0, and c = −i ln −1−i√
2

. Then f(z) = β sin z

satisfies the difference equation

f(z)2 + {f(z) +
√

2f(z + c)}2 = β2.

Corollary 1.14. Suppose that a(z), b(z) are non-zero rational functions, β(6=
0) is a constant. Then the equation (8) has no transcendental meromorphic
solution f(z) satisfying ρ2(f) < 1 under one of the following conditions:

(i) a(z), b(z) are non-constant rational functions;
(ii) a(z), b(z) are non-zero constants a, b and a2 + 1 6= b2.

2. Some lemmas

In order to prove the results above, we need the following lemmas.

Lemma 2.1. Let P (z) be a non-zero entire function, Q(z) be a non-constant
entire function, and let c be a non-zero finite value. If Q(z + c)P (z) = Q(z),
then there exists a positive number A such that T (r,Q) ≥ Ar holds for suffi-
ciently large r.

Proof. It follows from Q(z + c)P (z) = Q(z) that Q(z) is transcendental. Oth-
erwise, if Q(z) is a polynomial, then P (z) must be a polynomial. By comparing
degrees and coefficients of the equation Q(z+c)P (z) = Q(z), we find P (z) = 1.
Further, Q(z+ c) = Q(z) implies that Q is a constant. This is a contradiction.
Next we distinguish two cases to prove the claim.

Case 1. Q(z) has no zeros.
Then there exists a non-constant entire function h(z) satisfying Q(z) = eh(z),

which means that there exists a positive number A such that T (r,Q) ≥ Ar holds
for sufficiently large r.

Case 2. Q(z) has at least one zero, say z0.
Without loss of generality, we assume that z0 = 0. Note that Q(z+c)P (z) =

Q(z) implies Q(z)P (z−c) = Q(z−c). By induction, we find that −jc are zeros
of Q for positive integers j, so that the number n(r, 1

Q ) of zeros of Q in the disc

|z| ≤ r satisfies n(r, 1
Q ) ' r

|c| . Then there exists a positive number B such that

N(r, 1
Q ) ≥ Br holds for sufficiently large r, and hence there exists a positive

number A such that T (r,Q) ≥ N(r, 1
Q ) +O(1) ≥ Ar holds for sufficiently large

r. �

Lemma 2.2 (see, e.g., Lemma 5.1 in [17]). If f is a non-constant periodic
meromorphic function, then ρ(f) ≥ 1.

Lemma 2.3 (see, e.g., Theorem 1.45 in [17]). If h is a non-constant entire
function, then ρ2(eh) = ρ(h).
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Lemma 2.4 (see, e.g., Lemma 5.1 in [4]). Let aj(z) be entire functions of
finite order ρ and let gj(z) be entire functions such that gk(z) − gj(z) (j 6= k)
are transcendental entire functions or polynomials of degree greater than ρ.
Then

n∑
j=1

aj(z)e
gj(z) = a0(z)

holds only when

a0(z) = a1(z) = · · · = an(z) ≡ 0.

Lemma 2.5. Let bj(z) be meromorphic functions of finite order ρ such that
bj(z) has only finitely many poles for each j. Let gj(z) be entire functions such
that gk(z)− gj(z) (j 6= k) are transcendental entire functions or polynomials of
degree greater than ρ. Then

n∑
j=1

bj(z)e
gj(z) = b0(z)

holds only when

b0(z) = b1(z) = · · · = bn(z) ≡ 0.

Proof. Suppose that bj(z) has a finite number of poles, say zj1, zj2, . . . , zjkj
with multiplicity mj1,mj2, . . . ,mjkj , respectively, and set

p(z) =

n∏
j=0

kj∏
i=1

(z − zji)mji .

Applying Lemma 2.4 to the equation
n∑
j=1

p(z)bj(z)e
gj(z) = p(z)b0(z),

we obtain

b0(z) = b1(z) = · · · = bn(z) ≡ 0. �

Lemma 2.6 (see, e.g., [1]). Let g be a transcendental meromorphic function of
order less than 1, and let h be a positive constant. Then there exists an ε-set
E such that as C\E 3 z →∞, one has

g′(z + η)

g(z + η)
→ 0,

g(z + η)

g(z)
→ 1

uniformly in η for |η| ≤ h. Further, the ε-set E may be chosen so that for large
z not in E, the function g has no zeros or poles in |ζ − z| ≤ h.

According to the works of Hayman (see, e.g., [6]), an ε-set E is defined to be
any countable set of circles not containing the origin, and subtending angles at
the origin whose sum s is finite, in which the number s is called the (angular)
extent of the ε-set E. A basic fact remarked by Hayman [6] is that the set
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S of r for which the circle |z| = r meets the circles of an ε-set E has finite
logarithmic measure.

3. Proof of Theorem 1.1

Suppose that (4) admits a transcendental entire solution f with ρ2(f) < 1
such that P, Q are small functions of f . Set

(9) G(z) = f2(z), H(z) = P 2(z)f2(z + c).

Then (4) can be rewritten as

(10) G(z)−Q(z) = −H(z) = −P 2(z)f2(z + c),

which means G(z − c) − Q(z − c) = −H(z − c). By (9) and (10), we have
H(z − c) = P 2(z − c)G(z) and

(11) G(z)−Rc(z) = − f
2(z − c)

P 2(z − c)
,

where Rc is a small function of f defined by

Rc(z) =
Q(z − c)
P 2(z − c)

.

Assume, to the contrary, that P 2(z)Q(z + c) 6≡ Q(z), that is, Rc 6= Q. By
using the second main theorem for small functions (see, e.g., [14]), we get an
inequality containing Nevanlinna’s characteristic functions as follows:

2T (r,G) ≤ N(r,G) +N

(
r,

1

G

)
+N

(
r,

1

G−Q

)
+N

(
r,

1

G−Rc

)
+ S(r,G).

Note that N(r,G) = 0 and

N

(
r,

1

G

)
≤ 1

2
N

(
r,

1

G

)
≤ 1

2
T (r,G) +O(1),

N

(
r,

1

G−Q

)
≤ 1

2
N

(
r,

1

G−Q

)
≤ 1

2
T (r,G) + S(r,G),

N

(
r,

1

G−Rc

)
≤ 1

2
N

(
r,

1

G−Rc

)
≤ 1

2
T (r,G) + S(r,G).

Then we obtain

2T (r,G) ≤ 3

2
T (r,G) + S(r,G),

which is impossible. Therefore, we have

P 2(z)Q(z + c) = Q(z),

which completes the proof of Theorem 1.1.
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4. Proof of Corollary 1.2

It follows from Theorem 1.1 that

(12) P 2(z)Q(z + c) = Q(z).

If Q is not a constant, Lemma 2.1 yields ρ(Q) ≥ 1, which contradicts the
assumption ρ(Q) < 1. Thus Q(z) reduces to a constant, say Q(z) = q, and
hence P 2(z) = 1.

Furthermore, (4) gives

(13) [f(z) + if(z + c)][f(z)− if(z + c)] = q,

which yields immediately

(14) f(z) + if(z + c) = q1eh(z), f(z)− if(z + c) = q2e−h(z),

where h(z) is a non-constant entire function, and q1, q2 are constants with
q1q2 = q. It follows from (14) that

(15) f(z) =
q1eh(z) + q2e−h(z)

2
, f(z + c) =

q1eh(z) − q2e−h(z)

2i
.

Moreover, (15) implies

T (r, f) = 2T (r, eh) +O(1),

Lemma 2.3 yields ρ(h) = ρ2(f) < 1.

Making use of (15) again, we obtain

(16) iq1eg1(z) + iq2eg2(z) − q1eg3(z) + q2 = 0,

where

g1(z) = h(z + c) + h(z), g2(z) = h(z)− h(z + c), g3(z) = 2h(z).

By applying Lemma 2.4 to (16), then either −g2(z) = g1(z) − g3(z) = h(z +
c)− h(z) or g1(z) = g3(z)− g2(z) = h(z + c) + h(z) is a constant.

If h(z+ c) + h(z) is a constant, then h(z) is not a non-constant polynomial.
Otherwise, 0 = deg[h(z + c) + h(z)] = deg h(z) ≥ 1. This is a contradiction.
Hence h(z) is a transcendental entire function of order less than 1. We conclude

that h′(z+c)+h′(z) ≡ 0, that is h′(z+c)
h′(z) ≡ −1. Since ρ(h′) = ρ(h) < 1, Lemma

2.6 yields

−1 ≡ h′(z + c)

h′(z)
→ 1

as C\E 3 z →∞, where E is an ε-set. This is a contradiction.
Therefore, h(z + c) − h(z) must be a constant. We know then that h′(z +

c) − h′(z) ≡ 0. This implies that h′(z) is a periodic function with period c.
Since ρ(h′) = ρ(h) < 1, it follows from Lemma 2.2 that h′ = a, where a is a
non-zero constant, so that h(z) = az + b, where b is a constant. Thus, we get

f(z) = q1e
az+b+q2e

−az−b

2 . And by f(z + c) = f(z + c) in (15), we get eac = −i,
that is, ac = −πi2 + 2kπi (k ∈ Z). Corollary 1.2 follows.
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5. Proof of Theorem 1.4

Suppose that f is a transcendental entire solution of (6) with ρ2(f) < 1.
Then we have

(17) [f(z + c) + iP (z)L(f)(z)][f(z + c)− iP (z)L(f)(z)] = Q(z),

thus, both f(z + c) + iP (z)L(f)(z) and f(z + c) − iP (z)L(f)(z) have finitely
many zeros, so that

f(z + c) + iP (z)L(f)(z) = Q1(z)eh(z),

f(z + c)− iP (z)L(f)(z) = Q2(z)e−h(z),

where Q1, Q2 are polynomials with Q1Q2 = Q and h is a non-constant entire
function. It follows that

(18) f(z + c) =
Q1(z)eh(z) +Q2(z)e−h(z)

2
,

(19) L(f)(z) =
Q1(z)eh(z) −Q2(z)e−h(z)

2iP (z)
.

Moreover, (18) shows that the function fc(z) = f(z + c) satisfies

T (r, fc) = 2T (r, eh) +O(log r).

Since ρ2(f) < 1, we have

T (r, f) = T (r, fc) + S(r, f),

see, e.g., [5], and hence

T (r, f) = 2T (r, eh) + S(r, f).

Thus Lemma 2.3 yields ρ(h) = ρ2(f) < 1.
By differentiating (18), we have

(20) f (j)(z + c) =
Mj(z)e

h(z) +Nj(z)e
−h(z)

2
,

where

Mj = Q
(j)
1 + jQ

(j−1)
1 h′ + · · ·+ jQ′1[(h′)j−1 + Lj−2(h′)]

+Q1[(h′)j + Lj−1(h′)],

Nj = Q
(j)
2 + jQ

(j−1)
2 (−h′) + · · ·+ jQ′2[(−h′)j−1 +Rj−2(−h′)]

+Q2[(−h′)j +Rj−1(−h′)],

in which Lj−1, Lj−2, Rj−1, Rj−2 are polynomials of h(k), . . . , h′ such that
degLj−1 ≤ j, degRj−1 ≤ j, degLj−2 ≤ j − 1, degRj−2 ≤ j − 1. By (19)
and (20), one can obtain

Q1(z + c)eh(z+c) −Q2(z + c)e−h(z+c) − iM(z)eh(z) = iN(z)e−h(z),
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where

M(z) = P (z + c)

k∑
j=0

bjMj(z), N(z) = P (z + c)

k∑
j=0

bjNj(z),

or equivalently

(21) Q1(z + c)eg1(z) −Q2(z + c)eg2(z) − iM(z)eg3(z) = iN(z),

where

g1(z) = h(z + c) + h(z), g2(z) = h(z)− h(z + c), g3(z) = 2h(z).

Moreover, it is easy to show that ρ(M) < 1 and ρ(N) < 1 since ρ(h) < 1. Next
we distinguish four cases to discuss the equation (21).

Case 1. M(z) ≡ 0 and N(z) ≡ 0.
The equation (21) gives

Q1(z + c)eg1(z) = Q2(z + c)eg2(z),

that is

e2h(z+c) = eg1(z)−g2(z) =
Q2(z + c)

Q1(z + c)
.

That is a contradiction because h(z) is a non-constant entire function, so that
Case 1 is ruled out.

Case 2. M(z) 6≡ 0 and N(z) ≡ 0.
Now (21) turns into

(22) Q1(z + c)eg1(z)−g3(z) −Q2(z + c)eg2(z)−g3(z) = iM(z).

By using Lemma 2.4, either g1(z)− g3(z) = h(z + c)− h(z) or g3(z)− g2(z) =
h(z + c) + h(z) is a constant.

If h(z + c) + h(z) is a constant, we can rule out the case that h(z) is a non-
constant polynomial because 0 = deg[h(z + c) + h(z)] = deg h(z) ≥ 1, which
is a contradiction. Thus h(z) is a transcendental entire function of order less

than 1. We conclude that h′(z + c) + h′(z) ≡ 0, that is, h′(z+c)
h′(z) ≡ −1. Since

ρ(h′) = ρ(h) < 1, Lemma 2.6 yields

−1 ≡ h′(z + c)

h′(z)
→ 1

as C\E 3 z →∞, where E is an ε-set. This is a contradiction again.
If h(z+ c)− h(z) is a constant, say A, but h(z+ c) + h(z) is not a constant.

Rewrite (22) into the following form

Q2(z + c)e−h(z+c)−h(z) = Q1(z + c)eA − iM(z).

By comparing the order of both sides, we get a contradiction again, so that
Case 2 is ruled out.

Case 3. M(z) ≡ 0 and N(z) 6≡ 0.
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Then (21) turns into

(23) Q1(z + c)eg1(z) −Q2(z + c)eg2(z) = iN(z).

By Lemma 2.4, either g1(z) = h(z + c) + h(z) or g2(z) = h(z) − h(z + c) is a
constant.

If h(z+ c) + h(z) is a constant, then h(z) is not a non-constant polynomial.
Otherwise, 0 = deg[h(z + c) + h(z)] = deg h(z) ≥ 1, which is a contradiction.
Hence h(z) is a transcendental entire function of order less than 1. We conclude

that h′(z+c)+h′(z) ≡ 0, that is, h
′(z+c)
h′(z) ≡ −1. Since ρ(h′) = ρ(h) < 1, Lemma

2.6 yields

−1 ≡ h′(z + c)

h′(z)
→ 1

as C\E 3 z →∞, where E is an ε-set. This is a contradiction.
If h(z)− h(z+ c) is a constant, say B, but h(z+ c) + h(z) is not a constant.

Rewrite (23) into the following form

Q1(z + c)eh(z+c)+h(z) = Q2(z + c)eB + iN(z).

We also get a contradiction by comparing the order of both sides, so that Case
3 is ruled out.

Case 4. M(z) 6≡ 0 and N(z) 6≡ 0.
Applying Lemma 2.4 to (21), either −g2(z) = g1(z)−g3(z) = h(z+c)−h(z)

or g1(z) = g3(z)− g2(z) = h(z) + h(z + c) is a constant.
If h(z+ c) +h(z) is a constant, we easily see that h(z) is not a non-constant

polynomial. Otherwise, 0 = deg[h(z + c) + h(z)] = deg h(z) ≥ 1, which is
a contradiction. Then h(z) is a transcendental entire function of order less

than 1. We conclude that h′(z + c) + h′(z) ≡ 0, that is, h′(z+c)
h′(z) ≡ −1. Since

ρ(h′) = ρ(h) < 1, Lemma 2.6 yields

−1 ≡ h′(z + c)

h′(z)
→ 1

as C\E 3 z →∞, where E is an ε-set. This is a contradiction.
Therefore, h(z + c) − h(z) must be a constant, but h(z + c) + h(z) is not

a constant. Then we have h′(z + c) − h′(z) ≡ 0. This implies that h′(z) is a
periodic function with period c. Since ρ(h′) = ρ(h) < 1, it follows from Lemma
2.2 that h′ = a, where a is a non-zero constant, and hence h(z) = az+ b, where
b is a constant.

Thus, by the equation of (18), it yields the conclusion

f(z) =
Q1(z − c)eaz+b−ac +Q2(z − c)e−az−b+ac

2
.

Moreover, the polynomial P can be determined as follows: Putting h = az+b
into (21), we get

Q1(z + c)e2az+2b+ac −Q2(z + c)e−ac − iM(z)e2az+2b = iN(z),
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which gives {
iM(z) = eacQ1(z + c),

iN(z) = −e−acQ2(z + c).

By using the expressions of Mj and Nj , the system above becomes

(24)


iP (z + c)

k∑
j=0

bj

[
ajQ1(z) + jaj−1Q′1(z) + · · ·+Q

(j)
1 (z)

]
= eacQ1(z + c),

iP (z + c)

k∑
j=0

bj

[
(−a)jQ2(z) + j(−a)j−1Q′2(z) + · · ·+Q

(j)
2 (z)

]
= −e−acQ2(z + c).

Next, we distinguish three cases to determine P (z).
Subcase 4.1. If either Q1 or Q2 is a constant, the equation (24) becomes

either

iP (z + c)l(a) = eac

if Q1 is a constant, or

iP (z + c)l(−a) = −e−ac

if Q2 is a constant, where l(z) =
∑k
j=0 bjz

j , that is, P is a constant. For this

case, we also have l(±a) 6= 0.
Subcase 4.2. If either l(a) 6= 0 or l(−a) 6= 0, say l(a) 6= 0, then we find

that P is a constant by comparing the coefficients of the first equation in (24).
For this case, we must have l(−a) 6= 0. Conversely, if l(−a) 6= 0, we can obtain
similar conclusion by comparing the coefficients of the equation (24).

Subcase 4.3. When l(±a) = 0 and if both Q1 and Q2 are non-constant
polynomials, the equation (24) becomes

(25)


iP (z + c)

k∑
j=0

bj

[
jaj−1Q′1(z) + · · ·+Q

(j)
1 (z)

]
= eacQ1(z + c),

iP (z + c)

k∑
j=0

bj

[
j(−a)j−1Q′2(z) + · · ·+Q

(j)
2 (z)

]
= −e−acQ2(z + c).

Further, if either l′(a) 6= 0 or l′(−a) 6= 0, say l′(a) 6= 0, we find that P is
linear by comparing the coefficients of the first equation in (25). For this case,
we must have l′(−a) 6= 0. Conversely, if l′(−a) 6= 0, we can obtain similar
conclusion by comparing the coefficients of the equation (25).

Otherwise, that is, l(±a) = 0 and l′(±a) = 0, the equation (25) becomes the
following form

(26)


iP (z + c)

k∑
j=0

bj

[
AjQ

′′
1(z) + · · ·+Q

(j)
1 (z)

]
= eacQ1(z + c),

iP (z + c)

k∑
j=0

bj

[
BjQ

′′
2(z) + · · ·+Q

(j)
2 (z)

]
= −e−acQ2(z + c),
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where Aj , Bj are well-known constants, which obviously implies that degP ≥ 2.
For this case, we also have degQ1 ≥ 2 and degQ2 ≥ 2.

Therefore, Theorem 1.4 follows.

6. Proof of Theorem 1.11

Suppose, to the contrary, that f is a transcendental entire solution of (8)
with ρ2(f) < 1 such that β is a non-vanishing small function of f under one
of the conditions (i) and (ii) of Theorem 1.11. Now we rewrite (8) into the
following form [

f(z)

β(z)

]2
+

[
a(z)f(z) + b(z)f(z + c)

β(z)

]2
= 1,

which gives

(27) f(z) = β(z) sinh(z), a(z)f(z) + b(z)f(z + c) = β(z) cosh(z)

by Iyer’s result [2], where h is an entire function. Obviously, h is non-constant.
Moreover, by (27) and Lemma 2.3, we easily get ρ(h) = ρ2(f) < 1. Elimating
f from (27), we obtain

(28) (a(z)−i)β(z)eg1(z)−(a(z)+i)β(z)eg2(z)+b(z)β(z+c)eg3(z) = b(z)β(z+c),

where

g1(z) = ih(z) + ih(z + c), g2(z) = ih(z + c)− ih(z), g3(z) = 2ih(z + c).

Under the condition (i) of Theorem 1.11, that is, if β is a non-constant
periodic function with period c, then we may rewrite (28) into the following
form

(29) (a(z)− i)eg1(z) − (a(z) + i)eg2(z) + b(z)eg3(z) = b(z).

Applying Lemma 2.5 to (29), we find that g2(z) = g3(z)− g1(z) = ih(z + c)−
ih(z) or g1(z) = g3(z)− g2(z) = ih(z + c) + ih(z) is a constant.

If ih(z+c)+ ih(z) is a constant, then h(z) is not a non-constant polynomial.
Otherwise, 0 = deg[h(z + c) + h(z)] = deg h(z) ≥ 1, which is a contradiction.
Hence h(z) is a transcendental entire function of order less than 1. We conclude

that h′(z+c)+h′(z) ≡ 0, that is, h
′(z+c)
h′(z) ≡ −1. Since ρ(h′) = ρ(h) < 1, Lemma

2.6 yields

−1 ≡ h′(z + c)

h′(z)
→ 1

as C\E 3 z →∞, where E is an ε-set. This is a contradiction.
Therefore, ih(z + c) − ih(z) must be a constant. It follows that h′(z +

c)−h′(z) ≡ 0, that is, h′(z) is a periodic function with period c. Since ρ(h′) =
ρ(h) < 1, it follows from Lemma 2.2 that h′ = a, where a is a non-zero constant,
so that h(z) = az + b, where b is a constant. Putting h(z) = az + b into (27),
we deduce f(z) = β(z) sin(az+b), which tells us that ρ(f) = 1. However, since
β is a non-constant periodic function with period c, it follows from Lemma 2.2
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that ρ(β) ≥ 1, which therefore implies that β is not a small function of f . This
is a contradiction.

Under the condition (ii) of Theorem 1.11, that is, β is an non-constant non-
vanishing entire function of finite order ρ(β) = %, then we have β(z) = ep(z),
where p(z) is a non-constant polynomial of degree %. Now we can rewrite (28)
into the following form

(30) (a(z)−i)ep(z)−p(z+c)+g1(z)−(a(z)+i)ep(z)−p(z+c)+g2(z)+b(z)eg3(z) = b(z).

Applying Lemma 2.5 to (30), we find that either

h1 = p(z)− p(z + c) + g1(z) = p(z)− p(z + c) + i[h(z) + h(z + c)]

or

h2 = p(z)− p(z + c) + g1(z)− g3(z) = p(z)− p(z + c) + i[h(z)− h(z + c)]

or

h3 = p(z)− p(z + c) + g2(z) = p(z)− p(z + c)− i[h(z)− h(z + c)]

or

h4 = p(z)− p(z + c) + g2(z)− g3(z) = p(z)− p(z + c)− i[h(z) + h(z + c)]

is a constant.
If h1 is a constant, but h(z) is a non-constant polynomial, then

h(z + c) + h(z) = −i{p(z + c)− p(z) + h1}
is a polynomial with degree s = %−1. Note that β(z) = ep(z) is a small function
of f , that gives % = deg p(z) < deg h(z) = s. This is a contradiction. When
h(z) is a transcendental entire function of order less than 1, we see that

h(z + c) + h(z) = −i{p(z + c)− p(z) + h1}
is a polynomial with degree s = %− 1, and hence h(s+1)(z+ c) + h(s+1)(z) ≡ 0.
Since ρ(h(s+1)) = ρ(h) < 1, Lemma 2.6 yields

−1 ≡ h(s+1)(z + c)

h(s+1)(z)
→ 1

as C\E 3 z →∞, where E is an ε-set. This is a contradiction.
If h2 is a constant, then

h(z + c)− h(z) = i{p(z + c)− p(z) + h2}
is a polynomial with degree s = % − 1, so that h(s+1)(z + c) − h(s+1)(z) ≡
0. This implies that h(s+1)(z) is a periodic function with period c. Since
ρ(h(s+1)) = ρ(h) < 1, it follows from Lemma 2.2 that h(s+1) is a constant, that
is, h is a polynomial with deg h ≤ s + 1. Note that β is a small function of f
and f(z) = β(z) sinh(z). These results therefore deduce % < s + 1. This is a
contradiction.

If h3 is a constant, then

h(z + c)− h(z) = −i{p(z + c)− p(z) + h3}
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is a polynomial with degree s = %−1, so that h(s+1)(z+c)−h(s+1)(z) ≡ 0. This
implies that h(s+1)(z) is a periodic function with period c. Since ρ(h(s+1)) =
ρ(h) < 1, it follows from Lemma 2.2 that h(s+1) is a constant, that is, h is
a polynomial with deg h ≤ s + 1. Note that β is a small function of f and
f(z) = β(z) sinh(z). These results deduce % < s+ 1. This is a contradiction.

If h4 is a constant, but h(z) is a non-constant polynomial, then

h(z + c) + h(z) = i{p(z + c)− p(z) + h4}
is a polynomial with degree s = %−1. Note that β(z) = ep(z) is a small function
of f . It gives % = deg p(z) < deg h(z) = s. This is a contradiction. When h(z)
is a transcendental entire function of order less than 1, we see that

h(z + c) + h(z) = i{p(z + c)− p(z) + h4}
is a polynomial with degree s = %− 1, and hence h(s+1)(z+ c) + h(s+1)(z) ≡ 0.
Since ρ(h(s+1)) = ρ(h) < 1, Lemma 2.6 yields

−1 ≡ h(s+1)(z + c)

h(s+1)(z)
→ 1

as C\E 3 z → ∞, where E is an ε-set. This is a contradiction, and Theorem
1.11 follows.

7. Proof of Theorem 1.12

Similar to the case β is a non-constant periodic function in Theorem 1.11,
we can also get (29). Thus Lemma 2.5 yields that h′ is a non-zero constant,
say A, so that h(z) = Az +B, where B is a constant. Then (27) gives

(31) f(z) = β sin(Az +B).

Putting h = Az +B into (29), we can obtain

(32)

{
(a(z)− i)e−iAc = −b(z),
−(a(z) + i)eiAc = b(z),

which implies

(33) a(z)2 + 1 = b(z)2.

Now we rewrite equation (8) into the following form

f2(z) + a2(z)f2(z) + 2a(z)b(z)f(z)f(z + c) + b2(z)f2(z + c) = β2.

By using (33), the above equation can be converted into

(34) b2(z)f2(z) + 2a(z)b(z)f(z)f(z + c) + b2(z)f2(z + c) = β2.

Further, together with (31), we have

(35)

[b2(z)e2ib + 2a(z)b(z)e2ib+iac + b2(z)e2ib+2iac]e2iaz

+ [b2(z)e−2ib + 2a(z)b(z)e−2ib−iac + b2(z)e−2ib−2iac]e−2iaz

= 4b2(z)− 2a(z)b(z)[eiac + e−iac]− 4.
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Applying Lemma 2.5 to equation (35), we see

(36)


b2(z)e2ib + 2a(z)b(z)e2ib+iac + b2(z)e2ib+2iac ≡ 0,

b2(z)e−2ib + 2a(z)b(z)e−2ib−iac + b2(z)e−2ib−2iac ≡ 0,

4b2(z) + 2a(z)b(z)[eiac + e−iac] ≡ 4.

The first equation of (36) yields

2a(z)b(z) = −b2(z)[eiac + e−iac].

Combining this with the third equation in (36), we see

b2(z)[4− (eiac + e−iac)2] = 4,

which implies that b(z) is a constant b, and thus a(z) reduce to a constant a.
It follows from (33) that a2 + 1 = b2. The first equation in (32) implies that
eiAc = a−i

−b . Thus, Theorem 1.12 follows.
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