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Abstract. In 1963, Graham introduced a problem to find integer par-

titions such that the reciprocal sum of their parts is 1. Inspired by Gra-
ham’s work and classical partition identities, we show that there is an

integer partition of a sufficiently large integer n such that the reciprocal

sum of the parts is 1, while the parts satisfy certain congruence conditions.

1. Introduction

Integer partitions are one of the profound subjects and have been studied
for many years [2]. We say that λ = (λ1, λ2, . . . , λ`) is an integer partition of a

positive integer n if
∑`
i=1 λi = n, where a different order of λi’s is considered

the same partition. Here, we call λi a part of the partition λ. It was Ronald
L. Graham [3] who first studied the partition with a specific condition on the
reciprocal sum of parts. He showed that if n ≥ 78, then n can be partitioned
into distinct parts whose reciprocal sum is 1. We call a partition a Graham
partition in the memory of R. Graham if the reciprocal sum of its parts is 1.
For example, 78 has a Graham partition with distinct parts:

78 = 2 + 6 + 8 + 10 + 12 + 40 and 1 =
1
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Graham’s work seems to be isolated for a few decades, but more recently, it
draws attention in diverse ways. Alekseyev [1] showed that if n ≥ 8543, then
n can be partitioned into squares of distinct positive integers such that the
reciprocal sum of the positive integers is 1. For example,

49 = 22 + 32 + 62 and 1 =
1
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6
.

The four of the authors [4] showed that if n ≥ 1224, then n can be partitioned
into squares, not necessarily distinct, whose reciprocal sum of squares is 1. In
other words, there is a Graham partition of n into squares for n ≥ 1224. For
example,

66 = 22 + 22 + 22 + 32 + 32 + 62 and 1 =
1
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.

In this note, we consider Graham partitions into parts satisfying some con-
gruence conditions. From the seminal work of Euler (see [2, Chapter 1]), it is
now famous that the number of partitions of n into distinct parts equals the
number of partitions of n into odd parts. From Graham’s work on partitions
into distinct parts, it is natural to ask whether there is a Graham partition
consisting of odd parts. In this direction, we obtain the following result.

Theorem 1.1. We have that n ≡ 1 (mod 8) and n 6= 17 if and only if there
is a Graham partition of n into odd parts.

While the number of partitions into distinct parts equals the number of
partitions into odd parts, the number of Graham partitions into distinct parts
may not be the same as the number of Graham partitions into odd parts.

Motivated by Theorem 1.1, we further consider Graham partitions into parts
satisfying some congruence conditions. In this direction, we first consider m-
regular partitions which do not have parts divisible by m. Let Rm(n) be the
set of m-regular Graham partitions of n and let rm(n) be the size of Rm(n).
Theorem 1.1 can be restated as r2(n) > 0 if and only if n ≡ 1 (mod 8) and
n 6= 17. We obtain the following result for m = 3, 4, and 5.

Theorem 1.2. The following hold.

(a) r3(n) > 0 for n ≡ 1 (mod 3) and n 6= 7, 13, 19, and
r3(n) = 0 for all the other n.

(b) r4(n) > 0 for n ≥ 48.
(c) r5(n) > 0 for n ≥ 26.

Instead of proving Theorem 1.2 directly, we consider the subset Rm(n) ⊂
Rm(n) which consists of m-regular Graham partitions having parts congruent
to i (mod m) for each i ∈ {1, 2, . . . ,m − 1}. We denote rm(n) to be the size
of Rm(n). Note that r2(n) = r2(n). We also obtain the following result for
m = 3, 4, and 5.

Theorem 1.3. The following hold.
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(a) r3(n) > 0 for n ≡ 1 (mod 3) and n 6= 1, 4, 7, 13, 16, 19, 25, 34, and
r3(n) = 0 for all the other n.

(b) r4(n) > 0 for n ≥ 67.
(c) r5(n) > 0 for n ≥ 69.

As an analog of Theorems 1.2 and 1.3, for a fixed positive integer m, we
investigate a Graham partition of n such that there is a part congruent to i
(mod m) for each i ∈ {0, 1, 2, . . . ,m − 1}. We let Fm(n) be the set of such
partitions of n and fm(n) = |Fm(n)|. Then we obtain the following result for
fm(n) for m = 2, 3, 4, and 5.

Theorem 1.4. The following hold.

(a) f2(n) > 0 for n ≥ 34.
(b) f3(n) > 0 for n ≥ 42.
(c) f4(n) > 0 for n ≥ 59.
(d) f5(n) > 0 for n ≥ 82.

We also study another subset of R5(n) inspired by the Rogers–Ramanujan
identities. The product-side of the first Rogers–Ramanujan identity

1 +
∑
n≥1

qn
2∏n

k=1(1− qk)
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)

and the second Rogers–Ramanujan identity

1 +
∑
n≥1

qn
2+n∏n

k=1(1− qk)
=

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)

are generating functions for the number of partitions of n into parts congruent
to 1 or 4 (mod 5) and for the number of partitions of n into parts congruent
to 2 or 3 (mod 5), respectively.

Inspired from this fact, we define R+
5 (n) be the set of Graham partitions of

n into parts congruent to ±1 (mod 5), that is, quadratic residues modulo 5.
Similarly, let R−5 (n) be the set of Graham partitions of n into parts congruent
to ±2 (mod 5), that is, quadratic non-residues modulo 5. Let r+5 (n) = |R+

5 (n)|
and r−5 (n) = |R−5 (n)|. We obtain the following result.

Theorem 1.5. The following hold.

(a) r+5 (n) > 0 for n ≥ 101 and n ≡ 1 (mod 5).
(b) r−5 (n) > 0 for n ≥ 124 and n ≡ 4 (mod 5).

It is well-known that the sum-side of the first (resp. second) Rogers–Rama-
nujan identity is a generating function for the number of partitions of n into
distinct parts (resp. distinct parts at least 2) with gaps at least 2, meaning
that the difference between any two parts is at least 2 (see [2, Chapter 7]). As
Graham partitions of n > 1 do not contain the part 1, the condition that each
part is at least 2 has no role in the sense of Graham partitions unless n = 1.
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Let Gd(n) be the set of Graham partitions of n into distinct parts with gaps
at least d and let gd(n) = |Gd(n)|. Note that Graham’s result corresponds to
the fact that g1(n) > 0 for n ≥ 78. We obtain the following result on g2(n).

Theorem 1.6. We have g2(n) > 0 for n ≥ 108.

The key idea of proofs is that, in order to show the existence of a desired
Graham partition for sufficiently large integers, it suffices to check a bounded
range of integers using an induction. Since the number of partitions of n grows
exponentially, one might expect that it is likely that there is a partition of n with
prescribed properties. However, at the same time, it is hard to check whether
there is such a partition or not by the exhaustive search. Moreover, there are
relatively very few Graham partitions of n. With an additional condition, the
desired partition could be rare. For example, among 20, 506, 255 partitions
of 82, there are 59 Graham partitions of 82. Among them, there are only 3
partitions in the set F5(82).

The main obstacle of the proof is that we cannot list all the partitions for
large integers, so we need computational tricks to settle this issue down. We
illustrate one of the computational tricks to verify Theorem 1.5 and give the
lists of desired partitions for other results without computational details.

The rest of the paper is organized as follows. In Section 2, we give a proof
of Theorem 1.1 and this will be a guide for the proof of the other results.
In Section 3.1, we state two lemmas. The first lemma enables us to search
the target partitions more effectively, and the other lemma is for a necessary
condition to have desired partitions with congruence conditions. In Section 3.2,
we give brief proofs of other theorems. We conclude the paper with some
remarks.

2. Proof of Theorem 1.1

We first prove that if there is a Graham partition of n into odd parts, then
n ≡ 1 (mod 8) and n 6= 17. Suppose that there exist odd positive integers
λ1, . . . , λ` such that

n =
∑̀
i=1

λi and 1 =
∑̀
i=1

1

λi
.

Then we find that

n = (8a1 + 1) + · · ·+ (8ai + 1) + (8b1 − 1) + · · ·+ (8bj − 1)

+ (8c1 + 3) + · · ·+ (8ck + 3) + (8d1 − 3) + · · ·+ (8dr − 3)(2.1)

and

1 =
1

8a1 + 1
+ · · ·+ 1

8ai + 1
+

1

8b1 − 1
+ · · ·+ 1

8bj − 1

+
1

8c1 + 3
+ · · ·+ 1

8ck + 3
+

1

8d1 − 3
+ · · ·+ 1

8dr − 3
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with i, j, k, r ≥ 0.
Multiplying the product of all denominators to both sides of the second

equality, we obtain

1i(−1)j3k(−3)r ≡ i · 1i−1(−1)j3k(−3)r + j · 1i(−1)j−13k(−3)r

+ k · 1i(−1)j3k−1(−3)r + r · 1i(−1)j3k(−3)r−1 (mod 8).

Then, by dividing both sides by 1i−1(−1)j−13k−1(−3)r−1, we have

1(−1)3(−3) ≡ i(−1)3(−3) + j ·1 ·3(−3) +k ·1(−1)(−3) + r ·1(−1)3 (mod 8)

and thus,

(2.2) 1 ≡ i− j + 3k − 3r (mod 8).

The equality (2.1) implies that

n ≡ i · 1 + j(−1) + k · 3 + r(−3) ≡ 1 (mod 8)

by the modular equality (2.2). It can be easily checked that 17 cannot be
represented as the desired partition.

Next, we prove the opposite direction, that is, if n ≡ 1 (mod 8) and n 6= 17,
then there is a Graham partition of n into odd parts. Suppose that

n = λ1 + · · ·+ λ` and 1 =
1

λ1
+ · · ·+ 1

λ`

with odd numbers λ1, . . . , λ`. Then, letting n = 8k + 1, we have partitions of
3n+ 6, 3n+ 38, and 3n+ 70 as follows.

3n+ 6 = 3λ1 + · · ·+ 3λ` + 3 + 3 = 8(3k + 1) + 1,

1 =
1

3λ1
+ · · ·+ 1

3λ`
+

1

3
+

1

3
.


3n+ 38 = 3λ1 + · · ·+ 3λ` + 3 + 5 + 15 + 15 = 8(3(k + 1) + 2) + 1,

1 =
1

3λ1
+ · · ·+ 1

3λ`
+

1

3
+

1

5
+

1

15
+

1

15
.


3n+ 70 = 3λ1 + · · ·+ 3λ` + 5 + 5 + 15 + 15 + 15 + 15 = 8 · 3(k + 3) + 1,

1 =
1

3λ1
+ · · ·+ 1

3λ`
+

1

5
+

1

5
+

1

15
+

1

15
+

1

15
+

1

15
.

So, if n is a sufficiently large integer congruent to 1 (mod 8), then a desired
partition of n can be obtained from a partition of some smaller integer n′. More
precisely, we have

a partition of n = 8(3s) + 1 from n′ = 8(s− 3) + 1;
a partition of n = 8(3s+ 1) + 1 from n′ = 8s+ 1;
a partition of n = 8(3s+ 2) + 1 from n′ = 8(s− 1) + 1.
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There are three cases k ≡ 0, 1, 2 (mod 3).
Case 1: k = 3s. For a desired partition of n, we cannot use a partition of a
small integer if s− 3 < 0, that is, s = 0, 1, 2. It happens when k = 0, 3, 6.
Case 2: k = 3s + 1. For a desired partition of n, we can always use a
partition of a small integer.
Case 3: k = 3s + 2. For a desired partition of n, we cannot use a partition
of a small integer if s− 1 < 0, that is, s = 0. It happens when k = 2.

Therefore, it remains to check a desired partition of

n = 8 · 0 + 1, 8 · 2 + 1, 8 · 3 + 1, 8 · 6 + 1.

We have that

8 · 0 + 1 = 1,

8 · 2 + 1 = 17 : N/A,

8 · 3 + 1 = 25 = 5 + 5 + 5 + 5 + 5,

8 · 6 + 1 = 49 = 7 + 7 + 7 + 7 + 7 + 7 + 7.

Since 17 = 8 · 2 + 1 does not have a desired partition, we only have to check
a desired partition of n = 8k + 1 related to n′ = 8 · 2 + 1. All such n’s are

n = 8 · 7 + 1, 8 · 11 + 1, 8 · 15 + 1.

We observe that

8 · 7 + 1 = 57 = 3 + 9 + 9 + 9 + 9 + 9 + 9,

8 · 11 + 1 = 89 = 3 + 5 + 9 + 9 + 9 + 9 + 45,

8 · 15 + 1 = 121 = 11 + 11 + · · ·+ 11.

Since all such n’s have desired partitions, it completes our proof.

3. Proofs of other theorems

3.1. Two basic lemmas

To restrict the number of parts and the size of the largest part during the
search, we prove the following lemma.

Lemma 3.1. Let λ = (λ1, λ2, . . . , λ`) with λ1 ≥ λ2 ≥ · · · ≥ λ` be a Graham
partition of n. Then, the following hold:

(1) ` ≤
√
n.

(2) λ1 ≥
√
n.

Proof. From the Cauchy–Schwarz inequality(∑̀
i=1

λi

)(∑̀
i=1

1

λi

)
≥ `2,

we have ` ≤
√
n. Moreover, `λ1 ≥ n implies that λ1 ≥ n/` ≥

√
n. �
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The above lemma reduces the number of candidate partitions. However,
when n gets larger, it quickly becomes infeasible to check all the candidates.
In practice, we decompose the set of partitions into several pieces to decrease
the computation time.

As we have seen Theorem 1.1, the congruence conditions on the parts prevent
the existence of Graham partitions for certain arithmetic progressions. The
following lemma shows that this is a general phenomenon in Graham partitions
with congruence conditions.

Lemma 3.2. Let p be a prime and let n be a positive integer which has a
Graham partition λ = (λ1, . . . , λ`). Suppose that

(3.1) λi ≡ ±ζ (mod p).

Then
n ≡ ζ2 (mod p).

Proof. Since ζ = 0 case is trivial, we assume that ζ 6= 0. Let n be a positive
integer which has a p-regular Graham partition satisfying (3.1);

(3.2) n =

k∑
i=1

(pai + ζ) +

r∑
j=1

(pbj − ζ) and

k∑
i=1

1

pai + ζ
+

r∑
j=1

1

pbj − ζ
= 1.

The first equality provides

(3.3) n ≡ (k − r)ζ (mod p).

Furthermore, multiplying
∏

(pai + ζ) ·
∏

(pbj − ζ) on both sides of the second
equality of (3.2), we obtain

k(−1)rζk−1+r + r(−1)r−1ζk+r−1 ≡ (−1)rζk+r (mod p),

and hence

(3.4) ζ ≡ k − r (mod p).

Thus, (3.3) and (3.4) give

n ≡ ζ2 (mod p).

This completes the proof. �

3.2. Proofs of Theorems 1.2–1.6

We use mathematical induction to prove all the theorems in this section.
Thanks to the induction, we can conclude the claimed results once we find
Graham partitions of n for some range of integers n. We use Python to find
such partitions and the list of partitions to verify theorems can be found at

https://github.com/math-bkim/Graham_ptn

for readers.
We first give a proof of Theorem 1.3. Theorem 1.2 follows from Theorem 1.3

by checking finite cases between the claimed lower bounds in Theorem 1.2 and
in Theorem 1.3.

https://github.com/math-bkim/Graham_ptn
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Proof of Theorem 1.3. Lemma 3.2 immediately implies that r3(n) = 0 if n 6≡
1 (mod 3). We now assume that n ≡ 1 (mod 3). We note that if λ =
(λ1, . . . , λ`) ∈ R3(n), then

(3.5)
(10, 5, 5, 2λ1, . . . , 2λ`) ∈ R3(2n+ 20) and 2n+ 20 ≡ 4 (mod 6),

(20, 5, 4, 2λ1, . . . , 2λ`) ∈ R3(2n+ 29) and 2n+ 29 ≡ 1 (mod 6).

Therefore, to prove r3(n) > 0, it suffices to show that r3(n) > 0 from n = 37
to 2× 37 + 29− 3 = 100 with n ≡ 1 (mod 3). This is because we have Graham
partitions of n from n = 2× 37 + 29 = 103 to n = 2× 100 + 20 = 220 by (3.5),
and thus there are Graham partitions of n from n = 2 × 97 + 29 = 223 and
2 × 220 + 20 = 460 again by (3.5), and so on. For n ≤ 34, we list R3(n) by
exhaustive searches, which completes the proof of (a).

For the proof of (b), we remark that if λ = (λ1, . . . , λ`) ∈ R4(n), then

(6, 6, 3, 3λ1, . . . , 3λ`) ∈ R4(3n+ 15) and 3n+ 15 ≡ 0 (mod 3),

(10, 6, 5, 5, 3λ1, . . . , 3λ`) ∈ R4(3n+ 26) and 3n+ 26 ≡ 2 (mod 3),

(15, 10, 6, 3, 3λ1, . . . , 3λ`) ∈ R4(3n+ 34) and 3n+ 34 ≡ 1 (mod 3).

Thus, we find that it suffices to show that R4(n) is non-empty from n = 67 to
n = 3× 67 + 34− 3 = 255.

Finally, for the proof of (c), we notice that if λ = (λ1, . . . , λ`) ∈ R5(n), then

(6, 6, 6, 2λ1, . . . , 3λ`) ∈ R5(2n+ 18) and 2n+ 18 ≡ 0 (mod 2),

(6, 4, 3, 2λ1, . . . , 3λ`) ∈ R5(2n+ 13) and 2n+ 13 ≡ 1 (mod 2).

Therefore, we can conclude the proof if there is a partition in the set R5(n)
from n = 69 to n = 2× 69 + 18− 2 = 154. �

Now, we prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that λ = (λ1, . . . , λ`) ∈ Fm(n). When m = 2,
3, or 5, we find that

(6, 3, 2λ1, . . . , 2λ`) ∈ Fm(2n+ 9) and 2n+ 9 ≡ 1 (mod 2),

(10, 5, 5, 2λ1, . . . , 2λ`) ∈ Fm(2n+ 20) and 2n+ 20 ≡ 0 (mod 2).

Therefore, to prove fm(n) > 0, we need to check from n = 34 to n = 2× 34 +
20 − 2 = 86 for m = 2, from n = 42 to n = 2 × 42 + 20 − 2 = 102 for m = 3,
and from n = 82 to n = 2× 82 + 20− 2 = 182 for m = 5.

If m = 4, then

(3, 3, 3λ1, . . . , 3λ`) ∈ F4(3n+ 6) and 3n+ 6 ≡ 0 (mod 3),

(12, 4, 3, 3λ1, . . . , 3λ`) ∈ F4(3n+ 19) and 3n+ 19 ≡ 1 (mod 3),

(6, 2, 3λ1, . . . , 3λ`) ∈ F4(3n+ 8) and 3n+ 8 ≡ 2 (mod 3).

To complete the proof, we need to verify that there are such Graham partitions
from n = 59 to n = 3× 59 + 19− 3 = 193. �
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Finally, we prove results motivated from the Rogers–Ramanujan identities.

Proof of Theorem 1.5. We first note that the set R+
5 (n) could be non-empty

only if n ≡ 1 (mod 5) by Lemma 3.2 with p = 5 and ζ = 1. We now note that
if λ = (λ1, . . . , λ`) ∈ R+

5 (n), then

(4, 4, 4, 4λ1, . . . , 4λ`)∈R+
5 (4n+ 12) and 4n+ 12 ≡ 16 (mod 20),

(6, 6, 6, 4, 4λ1, . . . , 4λ`)∈R+
5 (4n+ 22) and 4n+ 22 ≡ 6 (mod 20),

(9, 9, 9, 6, 4, 4λ1, . . . , 4λ`)∈R+
5 (4n+ 37) and 4n+ 37 ≡ 1 (mod 20),

(21, 21, 14, 9, 9, 9, 4, 4λ1, . . . , 4λ`)∈R+
5 (4n+ 87) and 4n+ 87 ≡ 11 (mod 20).

Therefore, it suffices to check that R+
5 (n) is not empty from 101 to 486 =

4× 101 + 87− 5.
For the second claim, we note that the set R−5 (n) is empty if n 6≡ 4 (mod 5)

by Lemma 3.2 with p = 5 and ζ = 2. We now assume that n ≡ 4 (mod 5) and
observe that if λ = (λ1, . . . , λ`) ∈ R−5 (n), then

(8, 8, 2, 4λ1, . . . , 4λ`) ∈ R−5 (4n+ 18) and 4n+ 18 ≡ 14 (mod 20),

(12, 12, 8, 8, 3, 4λ1, . . . , 4λ`) ∈ R−5 (4n+ 43) and 4n+ 43 ≡ 19 (mod 20),

(8, 8, 8, 8, 8, 8, 4λ1, . . . , 4λ`) ∈ R−5 (4n+ 48) and 4n+ 48 ≡ 4 (mod 20),

(18, 18, 18, 8, 8, 3, 4λ1, . . . , 4λ`) ∈ R−5 (4n+ 73) and 4n+ 73 ≡ 9 (mod 20).

Thus, checking that r−5 (n) > 0 from n = 124 to n = 4 × 124 + 73 − 5 = 564
is enough. Here we give a pseudo-code to find a partition λ ∈ R−5 (5n− 1) for
n ≥ 80.

• Compute the sets
R1 = P(3n+ 1, S(4, b(5n− 1)/10c)) and R2 = P(2n− 2, S(0, 5)),

where P(n, S) is the set of partitions of n into parts in S whose recip-
rocal sum is less than 1, and S(a, b) = {5i+ 2, 5i+ 3 : a ≤ i < b}.

• While listing elements of the set R1 (R2, resp.), we partition the set

into 10 subsets R1,j (resp. R2,j), where j = b10
∑`
i=1

1
λi
c, where λ =

(λ1, . . . , λ`) is the partition in the set R1 (R2, resp.).
• for j=0 to 9 do

for (π, λ) ∈ R1,9−j ×R2,j do
if
∑

(1/πi) +
∑

(1/λi) = 1
then we find a desired partition (π1, . . . πk, λ1, . . . , λr).
stop the search.

We note that we find a partition in R−5 (404) in the set R1,9×R2,0 and |R1,9| =
385 and |R2,0| = 1109 for this case, while there are 214, 001, 655, 327 partitions
of 404 into parts congruent to 2 or 3 (mod 5). �
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Proof of Theorem 1.6. Let λ = (λ1, λ2, . . . , λ`) ∈ G2(n). If λ does not contain
3, 5, 6, 8, or 13 as a part, then we observe that

(2, 10, 15, 3λ1, . . . , 3λ`) ∈ G2(3n+ 27) and 3n+ 27 ≡ 0 (mod 3),

(2, 9, 18, 3λ1, . . . , 3λ`) ∈ G2(3n+ 29) and 3n+ 29 ≡ 2 (mod 3),

(2, 10, 24, 40, 3λ1, . . . , 3λ`) ∈ G2(3n+ 76) and 3n+ 76 ≡ 1 (mod 3).

We find a partition in G2(n) without the part 3, 5, 6, 8, or 13 from n = 163
to n = 3 × 163 + 76 − 3 = 562. This proves that g2(n) > 0 for n ≥ 163.
To complete the proof, we also find a partition λ ∈ G2(n) from n = 108 to
n = 162. �

Remark. One might try to use that for λ = (λ1, . . . , λ`) ∈ G2(n),

(2, 2λ1, . . . , 2λ`) ∈ G2(2n+ 2) and (3, 6, 2λ1, . . . , 2λ`) ∈ G2(2n+ 9)

if the smallest part of λ is greater than or equal to 4. However, it seems that
there are few partitions in G2(n) with the smallest part at least 4 for n ≤ 200.

4. Concluding remark

To prove the positivity, one may think of a generating function. For example,

∑
n≥1

r+5 (n)qn = [z1]

∞∏
n=0

1

(1− z1/(5n+1)q5n+1)(1− z1/(5n+4)q5n+4)

= q + q16 + q26 + q36 + q41 + q51 + 3q66 + 5q76 + q81 + · · · ,

where [zk]f(z, q) denotes the coefficient of zk for the power series f(z, q) ∈
Z[[z, q]]. While computation cost for expanding the above generating function
looks too expensive to verify theorems, an algebraic/analytic proof of the posi-
tivity would be interesting. We also conjecture that for any odd prime p, there
is a Graham partition of n ≡ 1 (mod p) into parts congruent to ±1 (mod p)
for sufficiently large integers n.

We expect a generalization of Theorem 1.5. Since ±1 are quadratic residues
and ±2 are quadratic non-residues modulo 5, we may consider a Graham parti-
tion of n into quadratic residues or quadratic non-resides modulo p for a prime
p larger than 5. We believe that there is such a Graham partition for sufficiently
large n without necessary conditions.

One may also consider Graham partitions corresponding to other Rogers–Ra-
manujan type identities like Schur’s partition identity or Bressoud’s generalized
Rogers–Ramanujan identities.
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