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MITTAG-LEFFLER STABILITY OF SYSTEMS OF

FRACTIONAL NABLA DIFFERENCE EQUATIONS

Paul Eloe and Jaganmohan Jonnalagadda

Abstract. Mittag-Leffler stability of nonlinear fractional nabla differ-

ence systems is defined and the Lyapunov direct method is employed to
provide sufficient conditions for Mittag-Leffler stability of, and in some

cases the stability of, the zero solution of a system nonlinear fractional
nabla difference equations. For this purpose, we obtain several prop-

erties of the exponential and one parameter Mittag-Leffler functions of

fractional nabla calculus. Two examples are provided to illustrate the
applicability of established results.

1. Introduction

Fractional nabla calculus deals with the generalization of nabla sums and
nabla differences of arbitrary order. The concept of fractional nabla differences
traces back to the works of Gray and Zhang [11], Anastassiou [5] and Atici and
Eloe [6]. There has been an increasing interest in this area during the last two
decades due to its applicability in various fields of science and engineering (for
example, see [16]). As a result, researchers have developed a fairly strong basic
theory of fractional nabla difference equations. For a detailed introduction to
fractional nabla calculus, we refer the reader to the recent monograph on this
topic [10].

Qualitative properties of dynamical systems assume importance in the ab-
sence of closed form solutions. One such property, which has wide applications,
is the stability of solutions. The Lyapunov method is an efficient technique to
analyze the stability of solutions of dynamical systems without explicitly solv-
ing the corresponding system of dynamical equations. Recently, Li, Chen and
Podlubny [15] defined Mittag-Leffler stability of solutions of fractional differen-
tial equations and produced the first application of the Lyapunov direct method
to fractional differential equations. More recently, Wyrwas and Mozyrska [18]
defined Mittag-Leffler stability of solutions of systems of nonlinear fractional
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2 P. ELOE AND J. JONNALAGADDA

delta difference equations and applied the Lyapunov direct method in the dis-
crete forward case. Motivated by these two works, in this article, we shall
study Mittag-Leffler stability of solutions of systems of nonlinear fractional
nabla difference equations and apply the Lyapunov direct method in the dis-
crete backward case.

The paper is organized as follows. Section 2 contains preliminaries on frac-
tional nabla calculus. Moreover, for easy reference, we summarize some prop-
erties of exponential and one parameter Mittag-Leffler functions in Theorem
2.4, and in Theorem 2.5, we summarize properties of the N -transform, which is
the Laplace transform on the time scale Z [9]. In Section 3, we define Mittag-
Leffler stability of solutions of systems of fractional nabla difference equations
and establish sufficient conditions for Mittag-Leffler stability of the zero solu-
tion of fractional nabla difference systems. The presentation in Section 3 is
modeled after [15] and [18]. In Section 4, we provide two illustrative examples
to demonstrate the proposed stability notion.

2. Preliminaries

Throughout, we shall employ the following notations, definitions and known
results of fractional nabla calculus [10]. Denote the set of all integers, real
numbers and complex numbers by Z, R and C, respectively. Define Na =
{a, a+ 1, a+ 2, · · · } and Nba = {a, a+ 1, a+ 2, . . . , b} for any a, b ∈ R such that
b − a ∈ N1. Assume that empty sums and products are taken to be 0 and 1,
respectively.

Definition 2.1 (Rising Factorial Function). For any t, α ∈ R such that (t+α) ∈
R \ {. . . ,−2,−1, 0}, the rising factorial function is defined by

tα =
Γ(t+ α)

Γ(t)
, 0α = 0,

where Γ(t) denotes the special gamma function. We use the convention that if
t ∈ {. . . ,−2,−1, 0} and (t+ α) ∈ R \ {. . . ,−2,−1, 0}, then tα = 0.

Lemma 2.1. Assume <(z) > 0. Then

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
.

Definition 2.2 ([10]). Let u : Na → R and α > 0. The αth-order nabla sum
of u is given by

(
∇−αa u

)
(t) =

1

Γ(α)

t∑
s=a+1

(t− s+ 1)α−1u(s), t ∈ Na.

Definition 2.3 ([10]). Let u : Na → R, α ∈ R and choose N ∈ N1 such that
N − 1 < α < N .
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MITTAG-LEFFLER STABILITY 3

(1) (Nabla Difference) The first order backward (nabla) difference of u is
defined by (

∇u
)
(t) = u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

(2) (R-L Fractional Nabla Difference) The Riemann-Liouville αth-order
nabla difference of u is given by(

∇αau
)
(t) =

(
∇N

(
∇−(N−α)
a u

))
(t), t ∈ Na+N .

(3) (Caputo Fractional Nabla Difference) The Caputo type αth-order nabla
difference of u is given by(

∇αa∗u
)
(t) =

(
∇−(N−α)
a

(
∇Nu

))
(t), t ∈ Na+N .

The following theorem provides an equivalent definition of the Riemann-
Liouville type fractional nabla difference; it is obtained in [4] and is stated and
proved as Theorem 3.62 in [10].

Theorem 2.1. Let u : Na → R, α > 0 and choose N ∈ N1 such that N − 1 <
α < N . Then(

∇αau
)
(t) =

1

Γ(−α)

t∑
s=a+1

(t− s+ 1)−α−1u(s), t ∈ Na+1.

The following relation, proved in [1], holds between Riemann-Liouville and
Caputo type fractional nabla differences.

Theorem 2.2. For any α > 0, using the convention that division at a pole
yields zero, we have(

∇αa∗u
)
(t) =

(
∇αau

)
(t)−

N−1∑
k=0

(t− a)k−α

Γ(k − α+ 1)

(
∇ku

)
(a), t ∈ Na+N .

In particular, for 0 < α < 1, we have(
∇αa∗u

)
(t) =

(
∇αau

)
(t)− (t− a)−α

Γ(1− α)
u(a), t ∈ Na+1.

Lemma 2.2. Let 0 < α < 1 and u : Na → R with u(a) ≥ 0. Then,(
∇αa∗u

)
(t) ≤

(
∇αa−1u

)
(t) ≤

(
∇αau

)
(t), t ∈ Na+1.

Proof. First, we prove (
∇αa−1u

)
(t) ≤

(
∇αau

)
(t).

We know that

(t− a+ 1)−α−1 =
Γ(t− a− α)

Γ(t− a+ 1)
> 0, t ∈ Na+1.
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4 P. ELOE AND J. JONNALAGADDA

Using Theorem 2.1, we obtain(
∇αa−1u

)
(t)−

(
∇αau

)
(t) = −α (t− a+ 1)−α−1

Γ(1− α)
u(a) ≤ 0, t ∈ Na+1.

Now, we prove (
∇αa∗u

)
(t) ≤

(
∇αa−1u

)
(t).

We know that

(t− a+ 1)−α =
Γ(t− a+ 1− α)

Γ(t− a+ 1)
> 0, t ∈ Na+1.

Using Theorems 2.1 and 2.2, we have(
∇αa∗u

)
(t) =

(
∇αau

)
(t)− (t− a)−α

Γ(1− α)
u(a)

=
(
∇αa−1u

)
(t) + α

(t− a+ 1)−α−1

Γ(1− α)
u(a)− (t− a)−α

Γ(1− α)
u(a)

=
(
∇αa−1u

)
(t)− (t− a+ 1)−α

Γ(1− α)
u(a)

≤
(
∇αa−1u

)
(t),

and the proof is complete. �

For completeness, we state a power rule that has been proved in [2].

Theorem 2.3 (Power Rule). Let α ∈ R+ and µ ∈ R. Assume that the following
factorial functions are well defined. Then,

∇−αa (t− a)µ =
Γ(µ+ 1)

Γ(µ+ α+ 1)
(t− a)µ+α, t ∈ Na.

Definition 2.4 ([7, 17]). For t ∈ Na, α > 0, and |λ| < 1, define the one
parameter Mittag-Leffler function of fractional nabla calculus by

Fα(λ, (t− a)α) =

∞∑
k=0

λk
(t− a)αk

Γ(αk + 1)
.

Definition 2.5 ([3]). For t ∈ Na, α > 0, and |λ| < 1, define the exponential
function of fractional nabla calculus by

êα,α(λ, (t− a)α) = (1− λ)

∞∑
k=0

λk
(t− a+ 1)α(k+1)−1

Γ(α(k + 1))
.

Note that the ratio test implies that each of Fα(λ, (t− a)α) and êα,α(λ, (t−
a)α) converge absolutely for t ∈ Na, α > 0, and |λ| < 1.

We observe the following properties of exponential and one parameter Mittag-
Leffler functions.

Theorem 2.4. Let 0 < α < 1 and |λ| < 1.
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MITTAG-LEFFLER STABILITY 5

(1) Fα(λ, 0) = êα,α(λ, 0) = 1.

(2) ∇Fα(λ, (t− a+ 1)α) = λ
(1−λ) êα,α(λ, (t− a)α), t ∈ Na+1.

(3) ∇−(1−α)
a−1 êα,α(λ, (t− a)α) = (1− λ)Fα(λ, (t− a+ 1)α), t ∈ Na.

(4) ∇αa−1êα,α(λ, (t− a)α) = λêα,α(λ, (t− a)α), t ∈ Na+1.

(5) êα,α(λ, (t− a)α) ≥ 0, t ∈ Na.
(6) ∇αa∗Fα(λ, (t− a)α) = λFα(λ, (t− a)α), t ∈ Na+1.
(7) Fα(λ, (t− a)α) ≥ 0, t ∈ Na.
(8) Fα(0, (t− a)α) = 1, t ∈ Na.

(9) êα,α(0, (t− a)α) = (t−a+1)α−1

Γ(α) , t ∈ Na.

(10) If 0 ≤ λ < 1, then λ
(1−λ) êα,α(λ, (t− a)α) ≤ Fα(λ, (t− a+ 1)α), t ∈ Na.

(11) If 0 ≤ λ < 1 then Fα(λ, (t−a)α) and Fα(−λ, (t−a)α) are monotonically
increasing and decreasing functions on Na, respectively.

(12) If 0 < λ < 1, then êα,α(λ, (t− a)α)→∞ as t→∞.
(13) If 0 ≤ λ < 1, then êα,α(−λ, (t− a)α)→ 0 as t→∞.
(14) If 0 < λ < 1, then Fα(λ, (t− a)α)→∞ as t→∞.
(15) If 0 < λ < 1, then Fα(−λ, (t− a)α)→ 0 as t→∞.

Proof. The proof of Property 1 is clear.
To prove Property 2, consider

∇Fα(λ, (t− a+ 1)α) = ∇
[
1 +

∞∑
k=1

λk
(t− a+ 1)αk

Γ(αk + 1)

]
=

∞∑
k=1

λk

Γ(αk + 1)
∇(t− a+ 1)αk

=

∞∑
k=1

λk

Γ(αk)
(t− a+ 1)αk−1

= λ

∞∑
k=0

λk
(t− a+ 1)α(k+1)−1

Γ(α(k + 1))

=
λ

(1− λ)
êα,α(λ, (t− a)α).

Refer to [3] for a proof of Property 3.
To prove Property 4, consider

∇αa−1êα,α(λ, (t− a)α)

= (1− λ)∇αa−1

[ (t− a+ 1)α−1

Γ(α)
+

∞∑
k=1

λk
(t− a+ 1)α(k+1)−1

Γ(α(k + 1))

]
= (1− λ)

∞∑
k=1

λk

Γ(α(k + 1))
∇αa−1(t− a+ 1)α(k+1)−1
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6 P. ELOE AND J. JONNALAGADDA

= (1− λ)

∞∑
k=1

λk

Γ(αk)
(t− a+ 1)αk−1

= λ(1− λ)

∞∑
k=0

λk
(t− a+ 1)α(k+1)−1

Γ(α(k + 1))

= λêα,α(λ, (t− a)α).

For an alternate proof of Property 4, refer to [7].
Now, we prove Property 5. Let u : Na → R. We know that êα,α(λ, (t− a)α)

is the unique solution of(
∇αa−1u

)
(t) = λu(t), t ∈ Na+1,(2.1)

u(a) = 1.

Expanding the left hand side of (2.1) using Theorem 2.1 and rearranging the
terms, we get

u(t) =
α

(1− λ)Γ(1− α)

t−1∑
s=a

(t− s+ 1)−α−1u(s), t ∈ Na+1.

Since

(t− s+ 1)−α−1 =
Γ(t− s− α)

Γ(t− s+ 1)
≥ 0

for a ≤ s ≤ (t− 1), it successively follows that

êα,α(λ, (t− a)α) = u(t) ≥ 0, t ∈ Na.

To prove Property 6, we use Properties 2 and 3. Consider

∇αa∗Fα(λ, (t− a)α) = ∇−(1−α)
a

[
∇Fα(λ, (t− a)α)

]
=

λ

(1− λ)
∇−(1−α)
a êα,α(λ, (t− a− 1)α)

= λFα(λ, (t− a)α).

For an alternate proof of Property 6, refer to [17].
To prove Property 7, we use Properties 3 and 5. Replacing a by (a + 1) in

Property 3 and rearranging the terms, we get

Fα(λ, (t−a)α)=
1

(1−λ)Γ(1−α)

t∑
s=a+1

(t−s+1)−αêα,α(λ, (s−a−1)α), t ∈ Na+1.

We know that

(t− s+ 1)−α =
Γ(t− s+ 1− α)

Γ(t− s+ 1)
≥ 0

for (a+ 1) ≤ s ≤ t and êα,α(λ, (t− a− 1)α) ≥ 0 for t ∈ Na+1, and so, Property
7 is verified.
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MITTAG-LEFFLER STABILITY 7

The proofs of Properties 8 and 9 are clear. To prove Property 10, we use
Properties 2 and 5. Applying ∇−1-operator on both sides of Property 2 and
rearranging the terms, we get

Fα(λ, (t− a+ 1)α)− λ

(1− λ)
êα,α(λ, (t− a)α)

=
1

(1− λ)
+

λ

(1− λ)

t−1∑
s=a+1

êα,α(λ, (s− a)α) ≥ 0

for t ∈ Na.
The proof of Property 11 follows immediately from Properties 2 and 5. Re-

cently, Jia et al. [12] have established the following results on asymptotic be-
havior of (2.1) with u(a) > 0.

(i) Assume that 0 < λ < 1. The solutions of (2.1) satisfy

lim
t→∞

u(t) =∞.

(ii) Assume that λ ≤ 0. The solutions of (2.1) satisfy

lim
t→∞

u(t) = 0.

Since êα,α(λ, (t − a)α) is the unique solution of (2.1) with u(a) = 1 > 0,
Properties 12 and 13 now follow. The proof of Property 14 now follows from
Properties 10 and 12.

To prove Property 15, it is clear from Properties 7 and 11 that

lim
t→∞

Fα(−λ, (t− a)α) = A ≥ 0.

Now, we prove A = 0. If possible, suppose A > 0. Since u(t) = Fα(−λ, (t−a)α)
is the unique solution of(

∇αa∗u
)
(t) = −λu(t), t ∈ Na+1,(2.2)

u(a) = 1,

apply the ∇−αa -operator on both sides of (2.2) to obtain

(2.3) u(t) = 1− λ

Γ(α)

t∑
s=a+1

(t− s+ 1)α−1u(s), t ∈ Na.

Solve algebraically for u(t) and we have

u(t) =
1

(1 + λ)
− λ

(1 + λ)Γ(α)

t−1∑
s=a+1

(t− s+ 1)α−1u(s), t ∈ Na+1,

which implies

(2.4) u(t) +
λ

(1 + λ)Γ(α)

t−1∑
s=a+1

(t− s+ 1)α−1u(s) =
1

(1 + λ)
, t ∈ Na+1.
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8 P. ELOE AND J. JONNALAGADDA

By Property 7, u(t) ≥ 0 for all t ∈ Na and

(t− s+ 1)α−1 =
Γ(t− s+ α)

Γ(t− s+ 1)
≥ 0

for (a+ 1) ≤ s ≤ t. Let t− L ≥ a+ 1, L ∈ N0 in (2.4), and we have

(2.5) u(t) +
λ

(1 + λ)Γ(α)

t−1∑
s=t−L

(t− s+ 1)α−1u(s) ≤ 1

(1 + λ)
, t ∈ Na+1.

Fix L ∈ N2 such that

(2.6)
A

2

(
1 +

λ

(1 + λ)Γ(α)

[
Γ(α+ 1) +

1

2
+ · · ·+ 1

L

])
>

1

(1 + λ)
.

Let t0 ∈ Na be such that if t ∈ Na, t−L ≥ t0, then u(t) > A
2 . We observe that,

for k ≥ 2,

(t− (t− k) + 1)α−1 =
Γ(k + α)

Γ(k + 1)
≥ 1

k
.

Then, from (2.5), we have

u(t) +
λ

(1 + λ)Γ(α)

[
Γ(α+ 1)u(t− 1) +

1

2
u(t− 2) + · · ·+ 1

L
u(t− L)

]
≥ A

2

(
1 +

λ

(1 + λ)Γ(α)

[
Γ(α+ 1) +

1

2
+ · · ·+ 1

L

])
>

1

(1 + λ)
,

which contradicts (2.5). Thus, A = 0 and the proof is complete. �

Related results on asymptotic behavior of solutions of discrete fractional
difference equations are found in [8] and [12].

For the sake of clarity, we introduce the N -transform and summarize prop-
erties that will be employed in Section 3.

Definition 2.6 ([7]). Let u : Na → R. The N -transform of u is defined by

Na
[
u(t)

]
=

∞∑
j=a

u(j)(1− z)j−1 = U(z)

for each z ∈ C for which the series converges.

Definition 2.7 ([7]). Let u, v : Na → R. The convolution of u and v is defined
by (

u ∗
a
v
)
(t) =

t∑
s=a

u(t+ a− ρ(s))v(s).

We observe the following properties of N -transform, which have been ob-
tained in [7].

Theorem 2.5. Assume the following N -transforms exist. Then

(1) Na

[(
u ∗
a
v
)
(t)
]

= N1

[
u(t+ a)

]
Na
[
v(t)

]
, t ∈ Na.
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MITTAG-LEFFLER STABILITY 9

(2) Na

[
(t−a+1)α

]
= (1−z)a−1 Γ(α+1)

zα+1 , α ∈ R\{. . . ,−3,−2,−1}, t ∈ Na.

(3) Na

[(
∇−αa−1u

)
(t)
]

= z−αNa
[
u(t)

]
, α > 0, t ∈ Na.

(4) Na

[(
∇αa−1u

)
(t)
]

= zαNa
[
u(t)

]
, 0 < α < 1, t ∈ Na+1.

(5) Na+1

[(
∇αa−1u

)
(t)
]

= zαNa
[
u(t)

]
− (1 − z)a−1u(a), 0 < α < 1, t ∈

Na+1.

(6) Na+1

[(
∇αa∗u

)
(t)
]

= zαNa+1

[
u(t)

]
− (1− z)azα−1u(a), 0 < α < 1, t ∈

Na+1.

(7) Na

[
Fα(λ, (t− a+ 1)α)

]
= (1− z)a−1 zα−1

(zα−λ) , t ∈ Na.

(8) Na

[
êα,α(λ, (t− a)α)

]
= (1− z)a−1 (1−λ)

(zα−λ) , t ∈ Na.

3. Mittag-Leffler stability

In this section, we define Mittag-Leffler stability of the zero solution of the
following systems of fractional nabla difference equations and employ a Lya-
punov’s direct method that has been introduced in [15] in the continuous case
and [18] in the discrete delta case. We consider(

∇αa∗u
)
(t) = f(t,u(t)), t ∈ Na+1,(3.1) (

∇αau
)
(t) = f(t,u(t)), t ∈ Na+1,(3.2)

where 0 < α < 1, u : Na → Rn and f : Na×Rn → Rn. Assume that f(t,0) = 0,
for all t ∈ Na, so that each of (3.1) and (3.2) admit the trivial solution.

Let u(t; a,u0) denote a solution of (3.1) (or (3.2)) satisfying the initial condi-
tion u(a; a,u0) = u0. We shall assume throughout this section that a solution,
u(t; a,u0) exists on Na. We refer the reader to [13, 14] for results on the exis-
tence and uniqueness of solutions of initial value problems (3.1) and (3.2).

Let || · || denote any norm equivalent to the Euclidean norm on Rn.

Definition 3.1. Assume f(t,0) = 0 and assume all solutions u(t; a,u0) of
(3.1) (or (3.2)) exist on Na. The trivial solution of (3.1) (or (3.2)) is said to be

(1) stable, if for each ε > 0 there exists a δ = δ(ε, a) > 0 such that

‖u0‖ < δ implies ‖u(t)‖ < ε, t ∈ Na,

for any solution u(t) = u(t; a,u0) of (3.1) (or (3.2)).
(2) asymptotically stable, if it is stable and for all t ∈ Na there exists

η = η(a) > 0 such that

‖u0‖ < η implies lim
t→∞

u(t) = 0.

Definition 3.2. Let M > 0 be an arbitrary constant. Define

D = {(t,u) : ‖u(t)‖ ≤M for all t ∈ Na} ⊆ Na × Rn.
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10 P. ELOE AND J. JONNALAGADDA

A mapping g : D → Rn is said to be locally Lipschitz with respect to the
second variable with a Lipschitz constant L, if the inequality

‖g(t,u)− g(t,v)| ≤ L‖u− v‖

holds whenever (t, u), (t, v) ∈ D. g is said to be globally Lipschitz if D =
Na × Rn.

First, we observe the relation between the Lipschitz condition and the system
(3.1).

Theorem 3.1. If f is globally Lipschitz with respect to the second variable
with Lipschitz constant 0 ≤ L < 1 then any solution u(t) = u(t; a,u0) of (3.1)
satisfies

‖u(t)‖ ≤ ‖u0‖Fα(L, (t− a)α).

Proof. If u(t) = u(t; a,u0) is a solution of (3.1), then

u(t) = u0 +∇−αa f(t,u(t)), t ∈ Na.

Consider

‖u(t)‖ ≤ ‖u0‖+
∥∥∇−αa f(t,u(t))

∥∥
≤ ‖u0‖+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1
∥∥f(s,u(s))

∥∥
= ‖u0‖+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1
∥∥f(s,u(s))− f(s,0) + f(s,0)

∥∥
≤ ‖u0‖+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1
∥∥f(s,u(s))− f(s,0)

∥∥
+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1
∥∥f(s,0)

∥∥
≤ ‖u0‖+ L∇−αa ‖u(t)‖.

Then there exists a nonnegative function x : Na → R+ ∪ {0} satisfying

(3.3) ‖u(t)‖+ x(t) = ‖u0‖+ L∇−αa ‖u(t)‖, t ∈ Na.

Apply the Na+1-transform to (3.3) to obtain

(3.4) U(z) = (1− z)a zα−1(
zα − L

)‖u0‖ −
zα(

zα − L
)X(z),

where Na+1

[
‖u(t)‖

]
= U(z) and Na+1

[
x(t)

]
= X(z). Apply the inverse Na+1-

transform to (3.4) to obtain

‖u(t)‖ = ‖u0‖Fα(L, (t− a)α)− x(t)− L

(1− L)

[
êα,α(L, (t− a− 2)α) ∗

a+1
x(t)

]
.
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MITTAG-LEFFLER STABILITY 11

Since x(t) is nonnegative and êα,α(L, (t− a− 2)α) ∗
a+1

x(t) is nonnegative,

‖u(t)‖ ≤ ‖u0‖Fα(L, (t− a)α),

and the proof is complete. �

Now, we define the stability of solutions of (3.1) and (3.2) in the sense of
the one parameter Mittag-Leffler function.

Definition 3.3. Assume f(t,0) = 0 and assume all solutions u(t; a,u0) of
(3.1) (or (3.2)) exist on Na. The trivial solution of (3.1) (or (3.2)) is said to be
Mittag-Leffler stable if there exist 0 ≤ λ < 1, b > 0, andm : D ⊆ Rn → R+∪{0}
with m(0) = 0 and m is locally Lipschitz on D with Lipschitz constant m0 such
that

(3.5) ‖u(t)‖ ≤
[
m
(
u0

)
Fα(−λ, (t− a)α)

]b
for any solution u(t) = u(t; a,u0) of (3.1) (or (3.2)).

We extend the Lyapunov direct method to the case of systems of fractional
nabla difference equations to obtain sufficient conditions for the Mittag-Leffler
stability of solutions of (3.1) (or (3.2)). Without loss of generality, the initial
time can be taken as a = 0.

Theorem 3.2. Assume f(t,0) = 0 and assume all solutions u(t; 0,u0) of (3.1)
exist on N0. Let D ⊂ Rn be a domain containing the origin. Let V : N0×D→ R
be a locally Lipschitz function with respect to the second variable such that

α1‖u‖p ≤ V (t,u(t)) ≤ α2‖u‖pq,(3.6)

∇α0∗V (t,u(t)) ≤ −α3‖u‖pq,(3.7)

for any solution u(t) = u(t; 0,u0) of (3.1), where αi, i = 1, 2, 3, p and q are
arbitrary positive constants with α3 < α2. Then the trivial solution of (3.1) is
Mittag-Leffler stable.

Proof. From (3.6) and (3.7) we have

∇α0∗V (t,u(t)) ≤ −α3

α2
V (t,u(t)).

Then there exists a nonnegative function w : N0 → R+ ∪ {0} satisfying

∇α0∗V (t,u(t)) + w(t) = −α3

α2
V (t,u(t)).

Apply the N1-transform to both sides to obtain

(3.8) V̄ (z) =
zα−1

zα + α3

α2

V (0,u0)− 1

zα + α3

α2

W (z),

where N1

[
V (t,u(t))

]
= V̄ (z), N1

[
w(t)

]
= W (z) and V (0,u0) is a nonnegative

constant. If u0 = 0, i.e., V (0,u0) = 0, the solution of (3.1) is u = 0. If u0 6= 0
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12 P. ELOE AND J. JONNALAGADDA

then V (0,u0) > 0. Apply the inverse N1-transform to both sides of (3.8) to
obtain

V (t,u(t)) = V (0,u0)Fα

(
− α3

α2
, tα
)
− 1(

1 + α3

α2

)[êα,α(− α3

α2
, (t− 2)α

)
∗
1
w(t)

]
.

Since w(t) is nonnegative, apply Theorem 2.4, Property 5 and we have

(3.9) V (t,u(t)) ≤ V (0,u0)Fα

(
− α3

α2
, tα
)
.

Substituting (3.9) into (3.6), we obtain

(3.10) ‖u(t)‖ ≤
[V (0,u0)

α1
Fα

(
− α3

α2
, tα
)] 1

p

,

where V (0,u0)
α1

> 0. Let m(u0) = V (0,u0)
α1

. Then, we have

(3.11) ‖u(t)‖ ≤
[
m(u0)Fα

(
− α3

α2
, tα
)] 1

p

,

where m(u0) = 0 holds if and only if u0 = 0. Since V (t,u) is Lipschitz with
respect to u and V (0,u0) = 0 if and only if u0 = 0, it follows that m(u0) is
also Lipschitz with respect to u0 and m(0) = 0. Thus, the trivial solution of
(3.1) is Mittag-Leffler stable. �

Theorem 3.3. Assume f(t,0) = 0 and assume all solutions u(t; 0,u0) of (3.2)
exist on N0. Let D ⊂ Rn be a domain containing the origin. Let V : N0×D→ R
be a locally Lipschitz function with respect to the second variable such that

α1‖u‖p ≤ V (t,u(t)) ≤ α2‖u‖pq,(3.12)

∇α0V (t,u(t)) ≤ −α3‖u‖pq,(3.13)

for any solution u(t) = u(t; 0,u0) of (3.2), where αi, i = 1, 2, 3, p and q are
arbitrary positive constants with α3 < α2. Then the trivial solution of (3.2) is
Mittag-Leffler stable.

Proof. From Lemma 2.3, we have

∇α0∗V (t,u(t)) ≤ ∇α0V (t,u(t)).

Combining this inequality with (3.13), we have

(3.14) ∇α0∗V (t,u(t)) ≤ −α3

α2
V (t,u(t)).

So, replace (3.7) by (3.14) and apply Theorem 3.2 to obtain the Mittag-Leffler
stability of the trivial solution of (3.2). �

Theorem 3.4. Assume f(t,0) = 0 and assume all solutions u(t; 0,u0) of
(3.2) exist on N0. If f satisfies a Lipschitz condition with respect to the second
variable with Lipschitz constant L > 0 and there exists a Lyapunov candidate
V (t,u) satisfying

(3.15) α1‖u‖r ≤ V (t,u(t)) ≤ α2‖u‖,
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(3.16) ∇V (t,u(t)) ≤ −α3‖u‖,

for any solution u(t) = u(t; 0,u0) of (3.2), where αi, i = 1, 2, 3 and r are
arbitrary positive constants with α3 < Lα2. Then

(3.17) ‖u(t)‖ ≤
[V (0,u0)

α1
F1−α

(
− α3

Lα2
, t1−α

)] 1
r

.

Proof. Using Definition 2.3, (3.15) and (3.16), we have

∇(1−α)
0∗ V (t,u(t)) = ∇−α0

[
∇V (t,u(t))

]
≤ −α3∇−α0 ‖u(t)‖

=
−α3

Γ(α)

t∑
s=1

(t− s+ 1)α−1‖u(s)‖

≤ −α3

LΓ(α)

t∑
s=1

(t− s+ 1)α−1‖f(s,u(s))‖

≤ −α3

L

∥∥∥ 1

Γ(α)

t∑
s=1

(t− s+ 1)α−1f(s,u(s))
∥∥∥

=
−α3

L

∥∥∥∇−α0 f(t,u(t))
∥∥∥ =

−α3

L

∥∥∥∇−α0 ∇α0 u(t)
∥∥∥ =

−α3

L
‖u(t)‖;

in particular,

(3.18) ∇(1−α)
0∗ V (t,u(t)) ≤ −α3

L
‖u(t)‖.

Now apply Theorem 3.2 with (3.7) replaced by (3.18) and with p = r and
pq = 1. Then (3.10) reduces to (3.17). �

Remark 3.1. Assume, in addition to the hypotheses of Theorem 3.2 (or The-
orem 3.3, that α3

α2
< 1. Then, (3.10) coupled with statement (15) of Theorem

2.4, and Theorem 3.2 (or Theorem 3.3) implies the trivial solution of (3.1) (or
(3.2)) is asymptotically stable. For the system (3.2), choose a Lipschitz con-
stant L > 0 such that α3

Lα2
< 1. Then, Theorem 3.4 implies the asymptotic

stability of the trivial solution of (3.2) independent of the size of α3

α2
.

4. Examples

Example 4.1. Consider the fractional nabla difference equation

(4.1)
(
∇α0u

)
(t) = −λu(t), t ∈ N1,

where 0 < α, λ < 1.
The condition 0 < λ < 1 implies all solutions u(t; 0, u0) of (4.1) exist on N0.

To see this, rewrite (4.1) as

u(t) +
1

Γ(−α)

t−1∑
s=1

(t− s+ 1)−α−1u(s) = −λu(t)
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14 P. ELOE AND J. JONNALAGADDA

which can be solved uniquely for u(t) for all t ∈ N1. Note that if u(0) > 0 then
u(t) > 0 for all t ∈ N0. To see this, if, for the sake of contradiction, there exists
t1 ∈ N1 with u(t) > 0 on Nt1−1

0 and u(t1) ≤ 0, then(
∇α0u

)
(t1) =

1

Γ(−α)

t1∑
s=1

(t1 − s+ 1)−α−1u(s)

= u(t1)− α

Γ(1− α)

t1−1∑
s=1

Γ(t1 − s− α)

Γ(t1 − s+ 1)
u(s)

< 0.

But from (4.1) we have (
∇α0u

)
(t1) = −λu(t1) ≥ 0

which is a contradiction.
Similarly, −u(t) is also a solution of (4.1), and if u(0) < 0, then u(t) < 0 for

all t ∈ N0. Thus, it is the case that if u is a solution of (4.1), then

∇α0 |u(t)| = −λ|u(t)|, t ∈ N1.

Choose V (t, u) = |u|. Then, V is Lipschitz with Lipschitz constant L = 1.
Take α1 = α2 = p = q = 1 and 0 < α3 ≤ λ < 1 such that α3 < α2. Then, V
satisfies (3.12) of Theorem 3.3. Now,

∇α0V (t, u(t)) = ∇α0 |u(t)| = −λ|u(t)| ≤ −α3|u(t)|
implies V satisfies (3.13) of Theorem 3.3. Hence, by Theorem 3.3, the trivial
solution of (4.1) is Mittag-Leffler stable.

Example 4.2. Let m ≥ 3 denote a positive odd integer. Consider the frac-
tional nabla difference equation

(4.2)
(
∇α0u

)
(t) = −um(t), t ∈ N1,

where 0 < α < 1.
As in Example 1 all solutions u(t; 0, u0) of (4.2) exist on N0. To see this,

write

u(t) +
1

Γ(−α)

t−1∑
s=1

(t− s+ 1)−α−1u(s) = −um(t).

If f(u) = u+ um, then f ′(u) ≥ 1 and so, (4.2) can be solved uniquely for u(t)
for all t ∈ N1. Moreover, u(0) > 0 implies u(t) > 0 for all t ∈ N0. To see this,
note that (

∇α0u
)
(t1) =

1

Γ(−α)

t1∑
s=1

(t1 − s+ 1)−α−1um(s)

= um(t1)− α

Γ(1− α)

t1−1∑
s=1

Γ(t1 − s− α)

Γ(t1 − s+ 1)
um(s)
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MITTAG-LEFFLER STABILITY 15

implies a contradiction analogous to the one produced in Example 1.
Since m is odd, −u(t) is also a solution of (4.2) and if u(0) < 0, then u(t) < 0

for all t ∈ N0. Thus, we have

∇α0 |u(t)| = −|u(t)|m, t ∈ N1.

Choose V (t, u) = |u|m. Then, V is locally Lipschitz. Take α1 = α2 = q = 1,
p = m, and 0 < α3 < α2 < 1. Then, V satisfies (3.12) and (3.13) of Theorem
3.3. Hence, by Theorem 3.3, the trivial solution of (4.2) is Mittag-Leffler stable.
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