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GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC

EQUATION FOR THE V -LAPLACIAN

Fanqi Zeng

Abstract. In this paper, we consider gradient estimates for positive so-

lutions to the following nonlinear elliptic equation on a complete Rie-
mannian manifold:

∆V u+ cuα = 0,

where c, α are two real constants and c 6= 0. By applying Bochner formula

and the maximum principle, we obtain local gradient estimates for pos-
itive solutions of the above equation on complete Riemannian manifolds

with Bakry-Émery Ricci curvature bounded from below, which generalize
some results of [8].

1. Introduction

Let (Mn, g) be an n-dimensional complete Riemannian manifold. The V -
Laplacian is defined by

∆V · = ∆ + 〈V,∇·〉,
where V is a smooth vector field on M . Here ∇ and ∆ are the Levi-Civita con-
nection and Laplacian with respect to metric g, respectively. The V -Laplacian
is an important generalization of the Laplacian, as well as V -harmonic maps in-
troduced in [2]. We define the ∞-Bakry-Émery curvature and N-Bakry-Émery
curvature as follows: [2, 6]

(1.1) RicV = Ric− 1

2
LV g,

(1.2) RicNV = RicV −
1

N
V ⊗ V,
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2 F. ZENG

where N > 0 is a natural number, Ric is the Ricci curvature of M and LV
denotes the Lie derivative along the direction V . In particular, we use the
convention that N = 0 if and only if V ≡ 0.

In this paper, we want to study positive solutions of the nonlinear elliptic
equation with the V -Laplacian

(1.3) ∆V u+ cuα = 0

on an n-dimensional complete Riemannian manifold (Mn, g), where c, α are
two real constants and c 6= 0. When V = 0, the above equation (1.3) reduces
to

(1.4) ∆u+ cuα = 0.

For c a function, the equation (1.4) is studied by Gidas and Spruck in [3] with
1 ≤ α ≤ n+2

n−2 when n > 2 and lather it is studied by Li in [5] to achieve gradient
estimates and Liouville type results with 1 ≤ α ≤ n

n−2 when n > 2. If c < 0

and α < 0, the equation (1.4) on a bounded smooth domain in Rn is known
as the thin film equation, which describes a steady state of the thin film (see
[4]). More progress of this and related equations can be found in [7, 9, 10, 12]
and the references therein.

Recently, inspired by the methods used by Yau in [11] and Brighton in [1],
Ma, Huang and Luo [8] derived local gradient estimates for positive solutions
of equations (1.4). We want to generalize their results to equation (1.3) and
we obtain the following results.

Theorem 1.1. Let (Mn, g) be an n-dimensional Riemannian manifold with
RicNV(Bp(2R)) ≥ −K, where K is a non-negative constant. Suppose that u is
a positive solution to the equation (1.3) on Bp(2R). Then on Bp(R), we have
the following inequalities.

(1) If c < 0 and α > 0, then we have

|∇u|(x)(1.5)

≤ M

ε
√
C1

√
2K +

1

R2

[(
R
√

(n− 1)K + n− 1
)
c1 + c2 +

(
2 +

C2
2

C1

)
c21

]
,

where M = sup
x∈Bp(2R)

u(x), the c1 and c2 are positive constants, and the positive

constants C1 and C2 are given by

C1 =
(ε− 1)2

(n+N)ε2
− ε− 1

ε
, C2 =

1− ε
ε

,

respectively. Here ε ∈ (0, 1) is close enough to 1.

(2) If c > 0 and n+N+2
2(n+N−1) < α < 2(n+N)2+9(n+N)+6

2(n+N)(n+N+2) with n ≥ 3, then we

have

|∇u|(x)(1.6)
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GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION 3

≤ M

ε̃
√
C3

√
2K +

1

R2

[(
R
√

(n− 1)K + n− 1
)
c1 + c2 +

(
2 +

C2
4

C3

)
c21

]
,

where M , c1 and c2 are the same as (1.5), and the positive constants C3 and
C4 are given by

C3 =
1

2

[(
(ε̃− 1)2

(n+N)ε̃2
− ε̃− 1

ε̃

)
− n+N

ε̃2

(
(n+N) + 2

n+N
(ε̃− 1) + α

)2
]
,

C4 =
4(α− 1)(n+N)(n+N + 2) + (n+N)[2(n+N) + 5]

[5(n+N) + 6]− 4(α− 1)(n+N)(n+N + 2)
,

respectively. Here ε̃ = [5(n+N)+6]−2(α−1)[(n+N)2+2(n+N)]
2[(n+N)2+5(n+N)+3] .

Letting R→∞ in (1.5) and (1.6), we obtain the following gradient estimates
on complete noncompact Riemannian manifolds:

Corollary 1.2. Let (Mn, g) be an n-dimensional complete noncompact Rie-
mannian manifold with RicNV ≥ −K, where K is a non-negative constant. Let
u be a positive solution to the equation (1.3). Then, we have the following
inequalities.

(1) If c < 0 and α > 0, then we have

(1.7) |∇u|(x) ≤ M

ε
√
C1

√
2K;

(2) If c > 0 and n+N+2
2(n+N−1) < α < 2(n+N)2+9(n+N)+6

2(n+N)(n+N+2) with n ≥ 3, then we

have

(1.8) |∇u|(x) ≤ M

ε̃
√
C3

√
2K,

where M = sup
x∈M

u(x).

We can also obtain similar results under the assumption that RicV is bounded
by below.

Theorem 1.3. Let (Mn, g) be an n-dimensional Riemannian manifold with

RicV(Bp(2R)) ≥ −K̃, and |V | ≤ L, where K̃ and L are non-negative constants.
Suppose that u is a positive solution to the equation (1.3) on Bp(2R). Then on
Bp(R), we have the following inequalities.

(1) If c < 0 and α > 0, then we have

|∇u|(x)(1.9)

≤ M

ε

√
C̃1

√√√√2K̃ +
1

R2

[(
R

√
(n− 1)K̃ +RL+ n− 1

)
c1 + c2 +

(
2 +

C̃2
2

C̃1

)
c21

]
,
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4 F. ZENG

where M = sup
x∈Bp(2R)

u(x), the c1 and c2 are positive constants, and the positive

constants C̃1 and C̃2 are given by

C̃1 =
(ε− 1)2

nε2
− ε− 1

ε
, C̃2 =

1− ε
ε

,

respectively. Here ε ∈ (0, 1) is close enough to 1.

(2) If c > 0 and n+2
2(n−1) < α < 2n2+9n+6

2n(n+2) with n ≥ 3, then we have

|∇u|(x)(1.10)

≤ M

ε̃

√
C̃3

√√√√2K̃ +
1

R2

[(
R

√
(n− 1)K̃ +RL+ n− 1

)
c1 + c2 +

(
2 +

C̃2
4

C̃3

)
c21

]
,

where M , c1 and c2 are the same as (1.9), and the positive constants C̃3 and

C̃4 are given by

C̃3 =
1

2

[(
(ε̃− 1)2

nε̃2
− ε̃− 1

ε̃

)
− n

ε̃2

(
n+ 2

n
(ε̃− 1) + α

)2
]
,

C̃4 =
4(α− 1)n(n+ 2) + n(2n+ 5)

(5n+ 6)− 4(α− 1)n(n+ 2)
,

respectively. Here ε̃ = (5n+6)−2(α−1)(n2+2n)
2(n2+5n+3) .

Corollary 1.4. Let (Mn, g) be an n-dimensional complete noncompact Rie-

mannian manifold with RicV ≥ −K̃, and |V | ≤ L, where K̃ and L are non-
negative constants. Let u be a positive solution to the equation (1.3). Then, we
have the following inequalities.

(1) If c < 0 and α > 0, then we have

(1.11) |∇u|(x) ≤ M

ε

√
C̃1

√
2K̃;

(2) If c > 0 and n+2
2(n−1) < α < 2n2+9n+6

2n(n+2) with n ≥ 3, then we have

(1.12) |∇u|(x) ≤ M

ε̃

√
C̃3

√
2K̃,

where M = sup
x∈M

u(x).

Remark 1.1. Clearly, our results generalize some results of [8] with respect to
the nonlinear elliptic equation (1.3) with V = 0.
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GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION 5

2. The proof of theorems

We firstly give the following lemma.

Lemma 2.1. Let (Mn, g) be an n-dimensional complete Riemannian manifold
with RicNV(Bp(2R)) ≥ −K, where K is a nonnegative constant. Assuming that
u is a positive solution to nonlinear elliptic equation (1.3) on Bp(2R). Denote
h = uε with ε 6= 0. Then on Bp(R), the following inequalities hold.

(a) If c < 0 and α > 0, then there exists ε ∈ (0, 1) such that

1

2
∆V |∇h|2 ≥

(
(ε− 1)2

(n+N)ε2
− ε− 1

ε

)
|∇h|4

h2
(2.1)

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2.

(b) If c > 0 and for a fixed α, there exist two positive constants ε, δ such
that

(2.2) c

[
n+N + 2

n+N
(ε− 1) + α

]
> 0

and

(2.3)
c2ε2

n+N
− c

δ

(
n+N + 2

n+N
(ε− 1) + α

)
> 0,

then we have

1

2
∆V |∇h|2 ≥

[
(ε− 1)2

(n+N)ε2
− ε− 1

ε
−cδ

(
n+N + 2

n+N
(ε− 1)+α

)]
|∇h|4

h2
(2.4)

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2.

Proof. Let h = uε, where ε 6= 0 is a constant to be determined. Then we have

log h = log uε = ε log u.

A simple calculation implies

∆V h = ∆(uε) + 〈V,∇(uε)〉(2.5)

= ε(ε− 1)uε−2|∇u|2 + εuε−1∆V u

= ε(ε− 1)uε−2|∇u|2 − cεuα+ε−1

=
ε− 1

ε

|∇h|2

h
− cεh

α+ε−1
ε .

Therefore we get

∇h∇∆V h(2.6)

= ∇h∇
(
ε− 1

ε

|∇h|2

h
− cεh

α+ε−1
ε

)
=
ε− 1

ε
∇h∇|∇h|

2

h
− c(α+ ε− 1)h

α+ε−1
ε
|∇h|2

h
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6 F. ZENG

=
ε− 1

εh
∇h∇(|∇h|2)− ε− 1

ε

|∇h|4

h2
− c(α+ ε− 1)h

α+ε−1
ε
|∇h|2

h
.

Applying (2.5) and (2.6) into the famous Bochner formula to h, we have

1

2
∆V |∇h|2(2.7)

= |∇2h|2 +∇h∇∆V h+ RicV(∇h,∇h)

≥ 1

n+N
(∆V h)2 +∇h∇∆V h+ RicNV(∇h,∇h)

≥ 1

n+N

(
ε− 1

ε

|∇h|2

h
− cεh

α+ε−1
ε

)2

+∇h∇∆V h−K|∇h|2

=

(
(ε− 1)2

(n+N)ε2
− ε− 1

ε

)
|∇h|4

h2

− c
(
n+N + 2

n+N
(ε− 1) + α

)
h
α+ε−1
ε
|∇h|2

h

+
c2ε2

n+N
h

2(α+ε−1)
ε +

ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2.

First, we prove (a).
In (2.7), if c < 0 and α > 0, we can choose ε ∈ (0, 1) close enough to 1 such

that

−c
(
n+N + 2

n+N
(ε− 1) + α

)
≥ 0,

and then (2.1) follows directly.
Next, we prove (b).

For a fixed point p, if there exists a positive constant δ such that h
α+ε−1
ε ≤

δ |∇h|
2

h , according to (2.2), then (2.7) becomes

1

2
∆V |∇h|2(2.8)

≥
[

(ε− 1)2

(n+N)ε2
− ε− 1

ε
− cδ

(
n+N + 2

n+N
(ε− 1) + α

)]
|∇h|4

h2

+
c2ε2

n+N
h

2(α+ε−1)
ε +

ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2

≥
[

(ε− 1)2

(n+N)ε2
− ε− 1

ε
− cδ

(
n+N + 2

n+N
(ε− 1) + α

)]
|∇h|4

h2

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2.

On the contrary, at the point p, if h
α+ε−1
ε ≥ δ |∇h|

2

h , then (2.7) becomes

1

2
∆V |∇h|2(2.9)
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GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION 7

≥
(

(ε− 1)2

(n+N)ε2
− ε− 1

ε

)
|∇h|4

h2

+

[
c2ε2

n+N
− c

δ

(
n+N + 2

n+N
(ε− 1) + α

)]
h

2(α+ε−1)
ε

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2

≥
{(

(ε− 1)2

(n+N)ε2
− ε− 1

ε

)
+δ2

[
c2ε2

n+N
− c

δ

(
n+N + 2

n+N
(ε− 1) + α

)]}
|∇h|4

h2

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2

≥
[

(ε− 1)2

(n+N)ε2
− ε− 1

ε
− cδ

(
n+N + 2

n+N
(ε− 1) + α

)]
|∇h|4

h2

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2

as long as

(2.10)
c2ε2

n+N
− c

δ

(
n+N + 2

n+N
(ε− 1) + α

)
> 0.

In both cases, (2.4) holds always. We complete the proof of Lemma 2.1. �

In order to obtain the upper bound of |∇h| by using the maximum principle,

it is sufficient to choose the coefficient of |∇h|
4

h2 in (2.1) and (2.4) such that it is
positive. In (2.4) of Lemma 2.1, we need to choose appropriate ε, δ such that

(2.11)
(ε− 1)2

(n+N)ε2
− ε− 1

ε
− δc

(
n+N + 2

n+N
(ε− 1) + α

)
> 0.

Under the assumption of (2.2), the inequality (2.3) becomes

(2.12) δ >
(n+N)c

c2ε2

(
n+N + 2

n+N
(ε− 1) + α

)
and (2.11) becomes

(2.13) δ <

(ε−1)2
(n+N)ε2 −

ε−1
ε

c
(
n+N+2
n+N (ε− 1) + α

) .
In order to ensure we can choose a positive δ, from (2.12) and (2.13), we need
choose an ε satisfying

(2.14)
(n+N)c

c2ε2

(
n+N + 2

n+N
(ε− 1) + α

)
<

(ε−1)2
(n+N)ε2 −

ε−1
ε

c
(
n+N+2
n+N (ε− 1) + α

) ,
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8 F. ZENG

which is equivalent to

[(n+N)2 + 5(n+N) + 3]ε2 + {2(α− 1)[(n+N)2 + 2(n+N)](2.15)

− [5(n+N) + 6]}ε+ (α− 1)2(n+N)2 − 4(α− 1)(n+N) + 3 < 0.

By a direct calculation, under the condition

−(n+N − 4)−
√

(n+N)2 + 5(n+N) + 3

2(n+N − 1)
(2.16)

< α− 1

<
−(n+N − 4) +

√
(n+N)2 + 5(n+N) + 3

2(n+N − 1)
,

we have

{2(α− 1)[(n+N)2 + 2(n+N)]− [5(n+N) + 6]}2(2.17)

− 4[(n+N)2 + 5(n+N) + 3]

× [(α− 1)2(n+N)2 − 4(α− 1)(n+N) + 3]

= (n+N)2{−4(n+N − 1)(α− 1)2 − 4(n+N − 4)(α− 1) + 13} > 0,

which shows the quadratic inequality (2.15) with respect to ε has two real roots.
Now we are ready to prove the following proposition which plays a key role

in the proof of main results.

Proposition 2.2. Let (Mn, g) be an n-dimensional complete Riemannian man-
ifold with RicNV(Bp(2R)) ≥ −K, where K is a nonnegative constant. Assuming
that u is a positive solution to nonlinear elliptic equation (1.3) on Bp(2R).
Denote h = uε with ε 6= 0. Then on Bp(R) the following inequalities hold.

(c) If c < 0 and α > 0, then we have

(2.18)
1

2
∆V |∇h|2 ≥ C1

|∇h|4

h2
− C2

∇h
h
∇(|∇h|2)−K|∇h|2,

where positive constants C1 and C2 are given by

C1 =
(ε− 1)2

(n+N)ε2
− ε− 1

ε
,

C2 =
1− ε
ε

,

respectively.

(d) If c > 0 and n+N+2
2(n+N−1) < α < 2(n+N)2+9(n+N)+6

2(n+N)(n+N+2) with n ≥ 3, then we

have

(2.19)
1

2
∆V |∇h|2 ≥ C3

|∇h|4

h2
− C4

∇h
h
∇(|∇h|2)−K|∇h|2,
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GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION 9

where positive constants C3 and C4 are given by

C3 =
1

2

[(
(ε̃− 1)2

(n+N)ε̃2
− ε̃− 1

ε̃

)
− n+N

ε̃2

(
(n+N) + 2

n+N
(ε̃− 1) + α

)2
]
,

C4 =
4(α− 1)(n+N)(n+N + 2) + (n+N)[2(n+N) + 5]

[5(n+N) + 6]− 4(α− 1)(n+N)(n+N + 2)
,

respectively. Here ε̃ = [5(n+N)+6]−2(α−1)[(n+N)2+2(n+N)]
2[(n+N)2+5(n+N)+3] .

Proof. We prove this proposition case by case.
(c) The case of c < 0 and α > 0. In the proof of Lemma 2.1 we see that by

choosing an ε ∈ (0, 1) such that n+N+2
n+N (ε− 1) + α ≥ 0 we get the

1

2
∆V |∇h|2 ≥

(
(ε− 1)2

(n+N)ε2
− ε− 1

ε

)
|∇h|4

h2
(2.20)

+
ε− 1

ε

∇h
h
∇(|∇h|2)−K|∇h|2.

Then we see that C1 = (ε−1)2
(n+N)ε2 −

ε−1
ε > 0 and C2 = 1−ε

ε > 0.

(d) The case of c > 0 and n+N+2
2(n+N−1) < α < 2(n+N)2+9(n+N)+6

2(n+N)(n+N+2) when n ≥ 3.

In this case, (2.2) is equivalent to

(2.21) ε > 1− (n+N)α

n+N + 2
.

We can check

(2.22)
5(n+N)+6

2[(n+N)2+2(n+N)]
<
−(n+N−4)+

√
(n+N)2 + 5(n+N)+3

2(n+N−1)
.

Hence, when n ≥ 3, for any α satisfies

(2.23) − n+N − 4

2(n+N − 1)
< α− 1 <

5(n+N) + 6

2[(n+N)2 + 2(n+N)]

which is equivalent to

(2.24) − n+N + 2

2(n+N − 1)
< α <

2(n+N)2 + 9(n+N) + 6

2(n+N)(n+N + 2)
,

then (2.21) is satisfied by choosing

(2.25) ε := ε̃ =
[5(n+N) + 6]− 2(α− 1)[(n+N)2 + 2(n+N)]

2[(n+N)2 + 5(n+N) + 3]
,

and it is easy to check that ε ∈ (0, 1).
In particular, we let

δ := δ̃(2.26)

=
1

2

 (n+N)c

c2ε̃2

(
n+N+2

n+N
(ε̃− 1)+α

)
+

(ε̃−1)2
(n+N)ε̃2 −

ε̃−1
ε̃

c
(
n+N+2
n+N (ε̃− 1)+α

)
 ,
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10 F. ZENG

then (2.10) and (2.11) are satisfied and (2.4) becomes

(2.27)
1

2
∆V |∇h|2 ≥ C3

|∇h|4

h2
− C4

∇h
h
∇(|∇h|2)−K|∇h|2,

where positive constants C3 and C4 are given by

C3 =
1

2

[(
(ε̃− 1)2

(n+N)ε̃2
− ε̃− 1

ε̃

)
− n+N

ε̃2

(
n+N + 2

n+N
(ε̃− 1) + α

)2
]
,

C4 =
4(α− 1)(n+N)(n+N + 2) + (n+N)[2(n+N) + 5]

[5(n+N) + 6]− 4(α− 1)(n+N)(n+N + 2)
,

respectively. We conclude the proof of Proposition 2.2. �

Now we begin to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove the case of c < 0 and α > 0. Choose a
smooth function η(r) such that 0 ≤ η(r) ≤ 1, η(r) = 1 if r ≤ 1, η(r) = 0 if
r ≥ 2, and

0 ≥ η(r)−
1
2 η(r)

′
≥ −c1, η(r)

′′
≥ −c2

for some c1, c2 ≥ 0. For a fixed point p ∈ M , let ρ(x) = dist(p, x) and

ψ = η
(
ρ(x)
R

)
. Therefore,

(2.28)
|∇ψ|2

ψ
=
|∇η|2

η
=

1

η(r)

(η(r)
′
)2

R2
|∇ρ(x)|2 ≤ c21

R2
.

Since RicNV ≥ −K, the Laplacian comparison theorem in [6] implies that

(2.29) ∆V ρ ≤
√

(n− 1)K coth

(√
K

n− 1
ρ

)
≤
√

(n− 1)K +
n− 1

ρ
.

Hence,

∆V ψ =
η(r)

′′ |∇ρ|2

R2
+
η(r)

′
∆V ρ

R
(2.30)

≥ −c2
R2

+
−c1
R

(√
(n− 1)K +

n− 1

ρ

)

≥ −
R
(√

(n− 1)K + n−1
R

)
c1 + c2

R2

= −

(
R
√

(n− 1)K + n− 1
)
c1 + c2

R2
.

Denote by Bp(R) the geodesic ball centered at p with radius R. Let G =
ψ|∇h|2. Assume G achieves its maximum at the point x0 ∈ Bp(2R) and assume
G(x0) > 0 (otherwise this is obvious). Then at the point x0, it holds that

∆VG ≤ 0, ∇(|∇h|2) = −|∇h|
2

ψ
∇ψ.
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Using (2.18) in Proposition 2.2, we obtain

0 ≥ ∆VG(2.31)

= ψ∆V (|∇h|2) + |∇h|2∆V ψ + 2∇ψ∇|∇h|2

= ψ∆V (|∇h|2) +
∆V ψ

ψ
G− 2

|∇ψ|2

ψ2
G

≥ 2ψ

[
C1
|∇h|4

h2
− C2

∇h
h
∇(|∇h|2)−K|∇h|2

]
+

∆V ψ

ψ
G− 2

|∇ψ|2

ψ2
G

= 2C1
G2

ψh2
+ 2C2

G

ψ
∇ψ∇h

h
− 2KG+

∆V ψ

ψ
G− 2

|∇ψ|2

ψ2
G.

Multiplying both sides of (2.31) by ψ
G yields

(2.32) 2C1
G

h2
≤ −2C2∇ψ

∇h
h

+ 2ψK −∆V ψ + 2
|∇ψ|2

ψ
.

Using the Cauchy inequality

−2C2∇ψ
∇h
h
≤2C2|∇ψ|

|∇h|
h
≤ C2

2

C1

|∇ψ|2

ψ
+ C1

G

h2
,

into (2.32) yields

(2.33) C1
G

h2
≤ 2ψK −∆V ψ +

(
2 +

C2
2

C1

)
|∇ψ|2

ψ
.

Hence, for x ∈ Bp(R), we have

C1G(x)(2.34)

≤ C1G(x0)

≤ h2(x0)

{
2K+

1

R2

[(
R
√

(n−1)K+n−1
)
c1+c2+

(
2+

C2
2

C1

)
c21

]}
.

It shows that

|∇u|2(x)(2.35)

≤ M2

ε2C1

{
2K+

1

R2

[(
R
√

(n−1)K+n−1
)
c1+c2+

(
2+

C2
2

C1

)
c21

]}
,

and hence,

|∇u|(x)(2.36)

≤ M

ε
√
C1

√{
2K+

1

R2

[(
R
√

(n−1)K+n−1
)
c1+c2+

(
2+

C2
2

C1

)
c21

]}
.

It yields the desired inequality (1.5) of Theorem 1.1.
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Next, we prove the case c > 0 and n+N+2
2(n+N−1) < α < 2(n+N)2+9(n+N)+6

2(n+N)(n+N+2) with

n ≥ 3. In a similar way as the case c < 0 and α > 0, on Bp(R), we have

|∇u|(x)(2.37)

≤ M

ε
√
C3

√
2K+

1

R2

[(
R
√

(n−1)K+n−1
)
c1+c2+

(
2+

C2
4

C3

)
c21

]
.

This concludes the proof of inequality (1.6) of Theorem 1.1. We complete the
proof of Theorem 1.1. �

Now we are in the position to give a brief proof of Theorem 1.3.

Skept of the proof of Theorem 1.3. Noticing that we have the following Bochner
formula to h with RicV,

1

2
∆V |∇h|2 = |∇2h|2 +∇h∇∆V h+ RicV(∇h,∇h),

then (2.7) becomes

1

2
∆V |∇h|2 = |∇2h|2 +∇h∇∆V h+ RicV(∇h,∇h)

≥ 1

n

(
ε− 1

ε

|∇h|2

h
− cεh

α+ε−1
ε

)2

+∇h∇∆V h− K̃|∇h|2

=

(
(ε− 1)2

nε2
− ε− 1

ε

)
|∇h|4

h2
− c

(
n+ 2

n
(ε− 1) + α

)
h
α+ε−1
ε
|∇h|2

h

+
c2ε2

n
h

2(α+ε−1)
ε +

ε− 1

ε

∇h
h
∇(|∇h|2)− K̃|∇h|2.

Moreover, the Laplacian comparison theorem in [2] implies: if RicV ≥ −K̃ and
|V | ≤ L, we have

∆V ρ ≤
√

(n− 1)K̃ +
n− 1

ρ
+ L.

So (2.28) and (2.30) also hold true in almost the same forms

|∇ψ|2

ψ
≤ c21
R2

and

∆V ψ ≥ −

(
R

√
(n− 1)K̃ +RL+ n− 1

)
c1 + c2

R2
.

Noticing the above facts, the proof of Theorem 1.3 is the same to that of
Theorem 1.1, so we omit it here. �
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