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SOME EXTENSION RESULTS CONCERNING ANALYTIC
AND MEROMORPHIC MULTIVALENT FUNCTIONS

ALI EBADIAN, VALI SOLTANI MASIH, AND SHAHRAM NAJAFZADEH

ABSTRACT. Let B4 («); (1, 1t € R, n,p € N) denote all multivalent func-
tions f class in the unit disk U as f(z) = zp+2;<>:n+p aj,z* which satisfy:

][] -3 cevozacn

And 4yt («) indicates all multivalent meromorphic functions h in the
punctured unit disk U* as h(z) =27 P+ 3772 by 2" which satisfy:

=] ]

In this paper several sufficient conditions for some classes of functions
are investigated. The authors apply Jack’s Lemma, to obtain this condi-
tions. Furthermore, sufficient conditions for strongly starlike and convex
p-valent functions of order v and type 3, are also considered.

o
<l—-—; (z€U0,0<a<p).
p

1. Introduction

Let C, R = (—o00,00) and N := {1,2,...} be set of complex, real and natural
numbers, respectively. Throughout this paper, by p, n it always means natural
numbers.

Let H denote the class of holomorphic functions in the open unit disc U :=
{#z: 2z € C and |z| < 1} on the complex plane C, and let #[a,n] denote the
subclass of functions p € H of the form:

p(z)=a+a,2"+---; (a€C,neN).
Let H[1,n] denoted by H(n). A function f(z) which is analytic in domain
is called p-valent, if

e for every complex number w, the equation f(z) = w have at most p
roots in €2, and
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e there exits a complex number wy such that the set f~1({wp}), has
exactly p element in ).

Let A(p,n) denote the class of all p-valent functions f € H of the following
form:

(1) fle)=2"+ > wz®  (pneN),
k=n+p
which are analytic in the open unit disk U. The class A(1, 1) denoted by A.

Let X(p,n) be the class of meromorphic p-valent functions in the punctured
open unit disk U* :=={z € C: 0< |z] <1} =U\ {0} of the form:

(2) hz)=z7"+ > bz"  (pneN),

k=n—p
with a pole of order p at the origin. The class ¥(1,1) denoted by X.

Definition (Subclasses for A(p,n)). Let Si(«), Kp(x), Rp(), S;(y,B), and
Ky(v,B) denote the subclasses of A(p,n) consisting of analytic functions which
are, p-valent starlike of order «, p-valent convex of order o, p-valent close-to-
convex of order «, strongly starlike p-valent of ordery and type 3, and strongly

convex p-valent of order y and type ; respectively. Thus: (see, for details,
[1,9,16])
2f'(2)
S¥a) =< feAlp,n): Re{
(0= € Alp: Re 55
2f"(2)
f'(2)

}>oc, z€eU, 0§oc<p},

}>oc, z e, O§c>c<p}7

Kp(a) = {f € A(p,n): Re {1 +
f'(z)

zp—1

}>cx, z €U, O§0c<p},

Ry(@) = { £ € Al Re{

and for0<pB<1,0<y<1

Sv.8)={ £ € An):

by E (RS

BotroB) = {7 € Ao Jang {114 2] 6}

As usual, in the present investigation, we write: S*(«):=Sj(«); starlike
functions of order «, K(«) := K1(«); convex functions of order «, S* = S;(0);
starlike functions, K := K1(0); convex functions, R(«) = R1(«); close-to-convex
functions of order &, S*(y) := S (v,0); strongly starlike functions of order 7,
and K(y) = K1 (y,0); strongly convex functions of order 7.

<gy, zGU}.

Definition (Subclasses for X(p,n)). Let MS; (o), MKp(et), MRp(x), /\/lg; (v,B)
and MI,(y,B) denote the subclasses of X(p,n) consisting of meromorphic
functions which are, meromorphic p-valent starlike of order o, meromorphic
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p-valent convex of order &, meromorphic p-valent close-to-convex of order «,
strongly starlike meromorphic p-valent of ordery and type 3, and strongly con-
vex meromorphic p-valent of order y and type 3; respectively. Thus, we have:
(see, for details, [15,25])

MS: () = {fEE(p,n): Re{z}c(g)}>oc, 2 e, 0§oc<p},
MK, (o) = {feE(p,n): —Re{1+ZJ{/(S)}>oc, zeU,Ogoc<p},
MR,(x) ={f €Z(p,n): —Re {2’ f'(2)} >a, 2€U, 0<x<p},

and for0<pB<1,0<y<1

.MQWﬁw=@rz@mw

arg{—lzf/(z) — [SH < gy, z € U},

p f(z)
. (2) ™
MK, (v, B) = {f € X(p,n): arg{—{l + 70 ] - B} <3V, z€ U}.
As usual, we write: MS*(«x) := MS7(«); meromorphic starlike functions of
order &, MS* = MS;(0); meromorphic starlike functions, MK(«) = MK1(x);
meromorphic convex functions of order &, MK = MK1(0); meromorphic convex
functions, MR(«) := MR1(«); meromorphic close-to-convex functions of order
o, MS*(y) = MSi(v,0); strongly starlike meromorphic functions of order vy,
and MK(y) :== MKi(y,0); strongly convex meromorphic functions of order .

Let B(u, o) be the class of functions f € A which is in the following relations

f’(Z)(f(Zz)) )

For some pu € R which p > 0, and some real number o with 0 < o« < 1. the
class B(u, «) has been investigated by Frasin and Jahangiri [7].

Motivated by the class B(u, &), two differential operators are defined and
then two new subclasses for multivalent analytic and multivalent meromorphic
functions is introduced.

<l—o (z€U).

Definition. Let n and p be real numbers not both zero. Defining the dif-
ferential operators Zit: A(p,n) — H(n) and 41 X(p,n) — H(n) as
follows:

%WM@r[fU][

f(2)

for some f € A(p,n) given by (1) with z € U, and

(
gy = [EE ] ) < (e En) by o

for some h € 3(p,n) given by (2) and z € U. Here and hereafter, all powers
are mean as principal values.

n n
pzP—1 ] _1+<n_u+pn>a”+pz +--
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Definition. Let n and p be real numbers not both zero. A function f € A(p,n)
is a member of the class %, (), if and only if

®) ARG -1 <=2 GeU) and G| =1

p;n z2=0
for some « be real number within 0 < & < p.

Note that condition (3), implies that
Re{ZIHNE)} > 75 (el 0<a<y)

The family %5 («) includes many classes of analytic functions as well as
some very well-known ones. For example, 2} («) = S;(«), Zpn(x) = Rp(x).
Another interesting subclass is the special case %,:2(«) which introduced by
Frasin and Darus [6]. Also, it is known that the class 2,4 («); p > 1 is the
class of starlike functions [22].

Many important properties of certain subclasses of holomorphic p-valent
functions study by several authors including: Irmak [12], Singh and Singh [27],
Owa et al. [21], Goswami et al. [10].

Definition. Let 1 and p be real numbers not both zero. A function f € ¥(p,n)
is a member of the class M)} (), if and only if

(4)

for some o be real number with 0 < & < p.

GG -1 <1-7 (el) ad AR _ =1

Note that condition (4), implies that
Re{ZH()} > 5 eV 0<a<y).

Many important properties of certain p-valent subclasses meromorphic func-
tions did the study by several researchers including: Singh et al. [26], Owa et
al. [19], Goyal and Prajapat [11], Srivastava et al. [28], Ganigi and Uralegaddi
[8].

Definition. For o« > p, let 4#,(x) be the subclass of A(p,n) consisting of
functions f(z) which satisfy

21" (2)
f'(z)
The class A1 («) was introduced and studied by Owa and et al. [20].

Re{1+ }<oc; (z€U).

Definition. Let n;, ; be real numbers not both zero for all i = 1,...,m;
(m € N). Let #M:ti © A™(p,n) — A(p,n) be the integral operator define by

TR fiy e f] (2) = / I I

i=1
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(5) = | [IZ1fl(z)dr (2 €U),

0 =1
foralli =1,...,n; f; € A(p,n). Note that this operator generalized by integral
operators and have been investigated in some reports (see [2,4]).

Lemma 1.1 ([24, Corollary 1.7)). If f(2) = z 4+ an+12" " + apy22™ 2 + -+
satisfies the condition

(n+1)sin(Z«)
\/1 +(n+1)°+2(n+1) cos(Z )
Then, f € 8*(x).

[f'(2) = 1] <

; (€U, 0<a<1).

The structure of the paper is as follows. In Sections 2, at first, we get enough
conditions for the functions in classes A(p,n) and X(p, n) be p-valent close-to-
conver and p-valent starlike. In the sequel, we get sufficient conditions for this
functions being to the classes %, () or .4} (o). Furthermore, we decide the
order of convexity of #M°*i. In Section 3, we consider sufficient conditions for
the function f being to p-wvalent strongly starlike and convex of order y and
type B in classes A(p,n) or X(p,n).

2. Properties of the classes Z)>} () and MJ°F (o)
Before starting our main result, we need the following Lemma due to Jack.

Lemma 2.1 ([14] (See also [17, Lemma 2.2a])). Let the (non-constant) function
w(2) = apz"™ + ani12" + -+ be analytic in U with a, # 0. If |w(z)| reaches
its mazimum value on the circle |z| =r < 1 at the point zy € U, then

20w’ (20) = mw(2),
where m is a real number and m > n > 1.

Theorem 2.2. Let p € H(n), and suppose that

(6) Re{zﬁég)} > n(o;;p); (z e, g < cx<p>.

Then
& p
Re{p(z)}>p, (zeﬂ),2§oc<p).

Proof. We define the analytic function w(z) in unit disk U by
p+ (20— p) w(z)
7 z) =
U )
Then w(0) = 0. Logarithmic differentiation of (7) yields that

)
Zp/(Z> o (20(_]?) Z(U,(Z) B Z(U,(Z) . . IZ
(8) p(2) p+QRa—pw(z) 1+w(z) ( GU,2§oc<p),

- (<u<p 0@ # -1 zeU).
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Now, suppose that there exists a point zg € U such that
lw(zg)|=1 and |w(z)]<1; when |z| <]zl

Then, by applying Lemma 2.1, we have
(9)  zow'(20) = mw(zp); (m>n>1, w(z)=e? 0#-n).
Form (8) and (9), we obtain

Re { 200" (20) } — Re { m(2c — p) eie' } {

p(20) p+ (20— p)et
m(2a — p) (20 — p + pcosb)

© pr+ (20— p)* + 2p(20 — p)cosh 2

< e=p)
- 2

819
m

(ZGU,§§0(<]?),

which contradicts the hypothesis (6). Thus, we conclude that |w(z)| < 1 for
all U; and equation (7) yields the inequalities

1—p(2)
p(z) - (2 1)
which implies that Re {p(2)} > . O

<1 (zEU <<x<p)

Putting pyi(z) = F[f1(2); (2 € U) and pa(2) = 91[h](2); (2 € U) in
Theorem 2.2, we get the following result:

Corollary 2.3. If the functions f € A(p,n) and h € X(p,n) satisfy the fol-
lowing conditions:

) R

(e 258 ) oo H) 2 o

for some § < o« < p andn, u be real numbers not both zero. Then

Re{ ZRL A1)} > 75 (z€T),

Re{g;];ﬂh](z)} > % (ze).

&
b
The special cases p1(z) = f(;), (z €U), pa(z) = #(Z); (zeU)andp=n=

1 in Theorem 2.2, lead us to the next corollary:
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Corollary 2.4. If the functions f € A and h € % satisfy the following

conditions:
/ —
Re{zf(z)}>3(X 1; (z€U),

f(z) 200
zh!(z) 3ou— 1
—Re{ n) }> TR (z€l),

for some 1 < o < 1. Then, Re{f(zz)} > o; (2 €U) and Re{#(z)} > o
(z € ).

Putting p =n =1, p1(2) = ZJ{;S); (z € U), and pa(z) =
Theorem 2.2, we get the following result:

Corollary 2.5. If the functions f € A and h € X satisfy the following
conditions:

% .
724187 (z €U) in

Q) SR ekl
S ]
. 2 (z)  zh"(2) oo+ 1 ;
el ) < een,

for some + < o< 1. Then f € S*(«) and h € MS*(cx).
2

Remark 2.6. A special case of Corollary 2.3 with A € ¥ can be found in[3,
Corollary 2.2].

Letting p1(2) := f'(2); (z € U), pa(2) == —2%2h/(2); (: € U) and p=n =1 in
Theorem 2.2, we have the following corollary:

Corollary 2.7. If the functions f € A and h € % satisfy the following
conditions:

zf"(2) 3o —1
Re{1+ 70 }> TR (z € U),
Re{1+zg(i§)}>—“;;(l; (» € U),

for some L <« < 1. Then, f € R(x) and h € MR(x).
2

W) (2 € U) in Theorem

,pz—p—l bl

Putting py(z) = '@, e U, and pa(z) =

2p—1

2.2, we get the following result:

Corollary 2.8. If the functions f € A(p,n) and h € X(p,n) satisfy the fol-
lowing conditions:

Re{1+ Z]{,/;Z)} >p+;l(z;p); (€ ),

Re{1+zg/;i§)}>—p+g<§;p); (z€U),




8 A. EBADIAN, V. S. MASIH, AND SH. NAJAFZADEH

for some 0 < & < p, then

Re{fl(z)}>p+‘x; (zeU,0< a<p),

zp—1 2
W (z) P+ o
Re{z—P—1}> 5 (zeU,0<a<p).

or equivalently,

feR(pJ;(x), he MR, (p;“> 0<a<p).

Remark 2.9. A special case of Corollary 2.8 with f € A and h € ¥ can be
found in [21, Theorem 1] and [3, Corollary 2.3], respectively.

M) (z € U) in Theorem

_pz—p—l ’

Putting p1(2) = Jz,ﬁ)l; (z € U) and pa(2) =
2.12, we get the following result.

Corollary 2.10. If the functions f € A(p,n) and h € X(p,n) satisfy the
conditions:
2f"( )} (p+ >
Re<1+ <p+n ; el
S 2 i’

i O pan(525). ven,

for some 0 < o < p, then
f'(z)
zP—1
W(z)

z—p1

p‘<p+cx; (zeU,0< < p),

+p‘<p+oc; (€U0, 0< < p).

Remark 2.11. As a special case we obtain [21, Theorem 2] that f is element of
the class A.

Theorem 2.12. Let p € H(n), and suppose that

i
(10a) Re{zﬁ(g)}<n<£?io;>; (zeU,0<a<p).
Then,
(10b) \p(z)fl|<1+%; (€U, 0< a<p).

Proof. The function w(z) is defined by

(11) p(z)=(1+;‘>w(z)+1; (€U, 0< a<p).
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Then w(z) is analytic in U and w(0) = 0. Logarithmic differentiation of (11)
yields that
/ !
(12) zp(z): (p+ o) za'(z) i (zeU,0<a<p).
p(z)  (prow(z)+p

Now, suppose that there exists a point zy € U such that

|w(zp)] =1 and |w(z)| <1, when [z|< |z

Then, by applying Lemma 2.1, we have

(13)  zow'(20) = mw(zp); (m>n>1, w(z)=e’ 0#-x).
Form (12) and (13), we obtain

I i6
e[} g [ o e0e” )
p(20) (p+o)e+p
~ m(p+a)(p+ «+pcosd)
P2 + 2p(p + o) cos 0 + (p + «)°

> et o)
2p+ o
which contradicts the hypothesis (10a). Thus, we conclude that |w(z)| < 1 for
all U; and equation (11) yields the inequality (10b). O

Putting p1(2) = FN[f](2); (2 €U), pa(2) = GL1AI(2); (2 € V), and
o =0 in Theorem 2.12, we get the following result.

Corollary 2.13. If the functions f € A(p,n) and h € X(p,n) satisfy the
conditions:

(e ) ol T e
i 2 ) sl 2 <t oo

for allm, w be real numbers not both zero. Then f € %):}(0) and h € 4);}*(0).

\n

The cases p=n = 1, p1(2) := f/(2); (z € U), and pa(2) := —22h'(2); (2 € U)
in Theorem 2.12, lead to the following:

Corollary 2.14. If the functions f € A and h € X satisfy the following

conditions:
z2f"(2) 200+ 3
Re<1 ;
{ TP S e B

zh"(z) 1
_Rel1 .
e{ + W) }>oc+2’ (z € U),
for some 0 < o < 1. Then |f'(z) — 1| < 14 o and |21/ (z) + 1| < 1+ «;
(z € U).
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Lettingp=n=1, a =0, p1(2) = & (z € U) and pa(z) = Zhl(z); (2 €U)
in Theorem 2.12, we get the following result.

Corollary 2.15. If the functions f € A and h € ¥ satisfy the following

conditions:
/
Re{zf(z>}> L (€U,

f(2) o+2’
zh!(z) 3oe+2
—Re{ h) }< PR (z€U),

_1

for some0 < o« < 1. Then ) 1‘ < 1+«. Especially

ﬁ—l‘ <1+ and

for oo =0 we have: f € %’?%(O) and h € E///R’ll (0).

By taking o« = 0, p1(2) = ZJ;/((;)); (z € U), pa(z) = fz;z((zz)); (z € U), and in

Theorem 2.12, we get the following result.

Corollary 2.16. If the function f € A(p,n) and h € X(p,n) satisfy the fol-
lowing condition:

S0 ) o
Re<1+ — < = ze ),
{95 - T <5 ee
zh"(z)  zh/'(2) n.
Re{l—i— Ve " he <3 el
Then f € %)).(0), or equivalently Z;&S) — p’ <p; (z€U) and h € .4, (0),
zh’

or equivalently h(gj) +p‘ <p; (z€0).

Remark 2.17. A special case of Corollary (2.16) with p = 1 was given by Irmak
and Cetin [13, Corollary 2], and Ponnusamy and Rajasekaran [23, Example 1].

Applying Corollary 2.16, we get the following sufficient conditions for order
of convexity of integral operator #M'~Mi where 0 <m; < 1.

Corollary 2.18. Let 0 <n; <1 foralli=1,...,m. If the function [ satisfy

the condition:
2fi(z)  z2fiz) | _n
Re<1 z — =2 —; U
i+ TG -5t <s eev
foralli=1,...,m. Then the integral operator FM1="i define by (5), belongs
to the class N, (X), where A =1+ 23" n; 4+ pm.

Proof. Define

(14) G(z) = ]Tf[1 {fi/(”ri [fi(T)]l_de, (z € U).

b prP~1 TP
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By logarithmically differentiating and then taking the real part of both side
(14), and applying Corollary 2.16, what obtained is:

Re {1 + Zg;g? }
:1+ZmRe{ 2/;2)) 2filz } j {
1+ZmRe{1+ J{,/;()) il }+§:

i=1 Z i=1

)

IN

7o

A

n
1+52m+pm. ([

i=1

Remark 2.19. A special case of Corollary 2.18 when p = n = 1 was given by
Frasin [5, Theorem 2.5].

Theorem 2.20. Let p € H(n), and suppose that

2p’(2) p— D
-] — < .
(15a) e n( P ), (ZG[U, 27oc<p>
Then
o p
(15b) |p(z)—1|<1—5, (zeU,2§a<p>.

Proof. We define w(z) by

p+(p—20) w(z), (2
pl—w(z) = \2

Then w(z) is analytic in U and w(0) = 0. Logarithmic differentiation of (16)
yields that

W) p-o)ew(z)
b 1w+ (20 w(z)]

Now, suppose that there exists a point zg € U such that

(16)  p(2) =

<a<p, w(z)#l;zéU).

(17) (ze€ ),

w(zp)] =1 and |w(z)] <1, when |z]< |zl
Then, by applying Lemma 2.1, we have

(18) zow'(20) = mw(zo); (m>n>1, w(z)= el?s 0+ 0).
Form (17) and (18), we get

1

)|,
v & J 2 (1 —cosf) (p2 + 2p(p — 2«) cos 6 + (p — 20c)2>

p(2)
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> n(p — 0(> .
- 20
which contradicts the hypothesis (15a). Thus, we conclude that |w(z)| < 1 for

all U and equation (16) yields the inequality (15b). O

Putting pi(z) = F[f1(2); (2 € U) and pa(2) = 1'[h](2); (2 € U) in
Theorem 2.20, we get the following result:

Corollary 2.21. If the functions f € A(p,n) and h € X(p,n) satisfy the
following conditions:

o ) o ) <o) e

(350 17) ey ) o255 e

for some § < o< p, then [ € B}(x) and h € A ().

Putting p=n =1, p1(2) := ZJJ:ES); (z € U) and pa(z) = —Zﬂg); (2 €U) in

Theorem 2.20, we get the following result:

Corollary 2.22. If the functions f € A and h € X satisfy the following
conditions:

zf"(z)  2f'(2) I—o ;
T e
zh'(z)  zZh () 1—o
’1 + W(z)  h(z) 20’ (zel),
zh'(2)

2f'(2)
) 71’ <1— o« and

forsome%gcx<1. Then () +1‘<170c.

Letting p = n = 1, p1(2) = &5 (2 € U) and po(z) = #(Z); (z€U) in

Theorem 2.20, we have the following corollary:

Corollary 2.23. If the functions f € A and h € X satisfy the following
conditions:

1—oc_

2f'(2)
1— U
‘ | <2 e
2zl (z) 11—«
1 .
for some 3 < <1, then f € %%?(oc) and h € //11,’10(06).
Finally, taking pi(z) := pleéf)l; (z € U) and pa(z) = _:Z/SZP),I; (z€U) in

Theorem 2.20, we have the following result.
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Corollary 2.24. If the functions f € A(p,n) and h € X(p,n) satisfy the
following conditions:

) a(2) ew,

ZS(S) <n(102(x°<>; (=€),

for some § < o < p, then f € B0 (x) and h € Ay ().

‘1+ +p

3. Strongly starlikeness and strongly convexity p-valent functions
of order vy and type 3

Theorem 3.1. If f € A(p,n) satisfies the following condition

=B (n+1)(p—B) sin(goc)

[fij)]p‘ﬁ <ZJ{£S) - B) “rep \/1+(n+1)2+2(n+1)cos(gcx)

<

)

where 0 < a <1 and 0 < B < p, thenfegg(oc,%)

Proof. Let f € A(p,n) given by (1). Define g(z) by

(19) g(z) = [‘gg)}Mer;n_ﬂéz”H+'~; 0<B<p, 2€l).
Differentiating (19) logarithmically,
29'(z) _ 1 <zf’(2) _ )
20) 0 =B\ P)
thus )
(0= L] (2 )
9'(2) p_ﬁ[zp 8 B).

By applying Lemma 1.1, we conclude that g € 5*(0(). From (20):

[ -1) om((59)35)

therefore f € §; (oc, %) and this completes the proof of the Theorem. O

By taking p=n =1 and o« = 1 in Theorem 3.1, we get the following result.
Corollary 3.2. If f € A satisfies the following condition
1
f(Z)] j-F <Zf’(2) 2(1-p)
— —-B)-1+B| < ——,
| [ z e 75
where 0 < B < 1, then f € S*(B).
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Theorem 3.3. If f € X(p,n) satisfies the following condition
b (21(2) (n+1) (p— B) sin(Za)
[27f(2)] P~

f(2) \/1+(n+1)2+2(n+1)cos(ga)

)

+B)+p[3 <

where 0 < a <1 and 0 < B < p, thenfej\/lg;(oc,%),

Proof. Let f € X(p,n) given by (2). The proof is similar to that of Theorem
3.1 with the function g defined by

g(z):[zﬁf(z)]ﬁp*Z+Bn’;"+1+'-; (zeU, 0<p<p). O

Putting p=n =1, « =1 and 3 = 0 in Theorem 3.3, we get the following
result.
Corollary 3.4. If f € ¥ satisfies the following condition
‘ f'(z)
f2(z)

2
+ 1| < —; zelU),
‘ N

then f € MS™.

Putting p = n = 1 and « = 1 in Theorem 3.3, the following result is
obtained:

Corollary 3.5. If f € ¥ satisfies the following condition

‘[Zf(Z)] pT (:{;()) +B> +1-p <M,

V5
where 0 < B < 1, then f € MS*(B).
Theorem 3.6. If f € A(p,n) satisfies the following condition
[f’(z)} (1+ 2f"(2) ‘3>_p+[3 - (n+1) (p—[?))sin(gcx)
pzP—1 f'(z) \/1-1- (n+1)* +2(n+ 1) cos(5 )

)

where 0 < a <1 and 0 < B < p, thenfeIC ( ,p)

Proof. Let f € A(p,n) given by (1). Define g(z) by
1
f'(2) } &3 n+p 1
21 gz::z[ =24 —— a2
21) ) pzp1 pp—B) "7
for z € U and 0 < 3 < p. Differentiating (21) logarithmically, we obtain

w(z) 1 ')
(22) e ‘pﬁ(“'fu> B)’

sl (55 )

thus
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By applying Lemma 1.1, it is concluded that g € S*(et). From (22) we have

w0 5) = () S

therefore f € IE,, (oc, %) and this completes the proof of the Theorem. O

The casesp=n =1, « = 1 and 3 = 0 in Theorems 3.6, lead to the following:
Corollary 3.7 ([18]). If f € A satisfies the condition

|f'(2) +2f"(2) — 1] < (z €U),

2 .
\/57
then f € K.

Putting p=n =1 and o« = 1 in Theorem 3.6, we get the following result.

Corollary 3.8. If f € A satisfies the condition

/ = Zf”( )

e (1426

where 0 < B < 1, then f € K(B).

Theorem 3.9. If f € X(p,n) satisfies the following condition

fz) 177 (., 2"

H—p} 1+ +B>“"B‘
(04 1) (0 B)sin(30)

\/1 +(n+1)°+2(n+1) cos(5 )

—B>—1+B‘ B),

(
n)

<

3

where 0 < a <1 and 0 < B < p, thenfe/\/ll%p(oc,%)

Proof. Let f € X(p,n) given by (2). The proof is similar to that of Theorem
3.6 with the function g defined by

1
f'(2) ]“ n—p ntl
Z2)=z|——— =z+ ——< p? + -
o) [—pZ‘P‘l pp—p)""
for some z € Uand 0 < 3 < p. O

Thecasesp=mn=1, « =1 and = 0 in Theorems 3.9, lead to the following;:
Corollary 3.10. If f € X satisfies the following condition

‘1_ 1 1"(z) <l, (z €U,

75

2f(2) (=)

then f € MIK.

The special cases p =n =1 and o = 1 in Theorem 3.9 brings us to the next
corollary.
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Corollary 3.11. If f € X satisfies the following condition

2] F 2f"(z) _
[—2%f(2)] <1+ 70 +[5>+1 Bl<

21-8).

7 (z€1),

where 0 < B < 1, then f € MK(B).
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