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PRICING SYMMETRIC TYPE OF

POWER QUANTO OPTIONS

Jaesung Lee and Youngrok Lee

Abstract. We derive full closed-form expressions for the prices of Eu-

ropean symmetric power quanto call options with four different forms of
terminal payoffs under the assumption of the classical lognormal asset

price and exchange rate model.

1. Introduction

A power option differs from standard vanilla option in the sense that the
payoff function is not linear but raised to some positive power in the underly-
ing spot. Through its non-linear payoff, a power option can hedge non-linear
price risks. For example, if an importer earns profit by a percentage mark-up
on imported products, the exchange rate change will lead to a price change,
which in turn will affect demand volumes. The importer can hedge a risk of
non-linearly decreasing earnings by purchasing a power option that provides a
leveraged payout.

A quanto option is a cross-currency option where the underlying asset is
denominated in a currency other than the currency in which the option is
settled. If investors were to invest directly in a foreign stock index, they would
expose themselves to risks in that foreign index as well as risks due to the
fluctuations in the currency exchange rate. A quanto option can create greater
liquidity in smaller or riskier markets by removing currency risk for overseas
investors.

There are several types of power options and quanto options. In general,
there are two types of power options which are asymmetric and symmetric
power options (see page 87 of [9]). With an asymmetric power option, the
underlying ST and the strike K of a standard option payoff function are in-
dividually raised to the n-th power. In the symmetric type, the entire vanilla
option payoff is raised to the n-th power so that put and call display the same
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2 J. LEE AND Y. LEE

payoff shapes. Meanwhile, quanto options can have four different forms of ter-
minal payoffs: a foreign equity option converted to domestic currency, a foreign
equity option struck in domestic currency, a foreign equity option struck in pre-
determined domestic currency or an FX option denoted in domestic currency.

So far, many researches have been done on power option pricing and quanto
option pricing under the classical Black-Scholes [1] framework or under more
sophisticated volatility assumptions. To mention some basic references, Heynen
and Kat [3] obtained closed-form formulas for the prices of general power op-
tions under the Black-Scholes framework and suggested various hedging meth-
ods. Tompkins [8] focused on pricing and hedging of power options both the-
oretically and from the market point of view by exhibiting leverage nature
of power options. Wystup [10] obtained various quanto option price formula
including quanto forward option and quanto digital option under the Black-
Scholes framework and introduced three vega positions on hedging of quanto
options together with the application to performance linked deposit. The text-
book of Wystup [9] contains general theory and application of quanto options
and the textbook of Kwok [4] contains detailed explanation of four different
terminal payoff types of quanto options.

Power options and quanto options are among the popular exotic options
in the currency-related markets. Their contribution to reduction of risk en-
courages participation in these markets. For that reason, the combination of
power option and quanto option can be considered on its optimal valuation.
Among the very few existing researches related to power quanto option pricing
is a research work on pricing power exchange option by Blenman and Clark
[2] where the authors combine power option and Margrabe [7] type exchange
option. Recently, Lee et al. [6] derived closed-form expressions for asymmetric
power quanto call options price under the classical lognormal asset price and
exchange rate model.

In this paper, we derive full closed-form expressions for the price of sym-
metric power quanto call options with four different forms of terminal payoff
under the assumption of lognormal asset price and exchange rate. Due to the
binomial term (ST −K)

n
, the general value formula derivation for symmetric

power quanto options is more complicated than that of asymmetric ones. The
binomial terms involve foreign exchange rate as well as underlying asset price in
valuation of symmetric power option, which makes us follow delicate measure
theoretic approaches.

In Section 2, we specify the dynamics of the processes of underlying asset
price and exchange rate in the risk-neutral world. In Section 3, we specify four
different forms of payoff at maturity and obtain the analytic expressions for
the price of each symmetric power quanto call option together with another
symmetric type of power quanto call options involving similar binomial terms
in maturity payoffs.
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PRICING SYMMETRIC TYPE OF POWER QUANTO OPTIONS 3

2. Risk-neutral quanto dynamics

Let rf and rd denote the constant foreign and domestic riskless rates, respec-
tively, and let q denote the dividend yield rate of a certain foreign asset. We
assume that St is the asset price in foreign currency with the constant volatility
σS , and Vt is the exchange rate in foreign currency per unit of the domestic
currency with the constant volatility σV . Let the risk-neutral dynamics of St
and Vt in foreign currency be governed by

(2.1)

dSt = (rf − q)Stdt+ σSStdB
Qf
t ,

dVt = (rf − rd)Vtdt+ σV VtdW
Qf
t ,

where BQf
t and WQf

t are two standard Brownian motions in foreign currency

with the correlation ρ so that dBQf
t dWQf

t = ρdt.
Then we obtain the following risk-neutral dynamics of (2.1) in domestic

currency:

(2.2)

dSt = (rf − q − ρσSσV )Stdt+ σSStdB
Qd
t ,

dVt = (rd − rf )Vtdt+ σV VtdW
Qd
t

by the well-known standard procedure (see page 95 of [9] or Section 2 of [5]),

where BQd
t and WQd

t are two correlated standard Brownian motions in domestic
currency.

3. Symmetric power quanto option pricing

The following theorems in next subsections give the explicit formulas for
the prices of European power quanto call options with constant foreign and
domestic riskless rates according to four different forms of terminal payoff: a
foreign equity option converted to domestic currency, a foreign equity option
struck in domestic currency, a foreign equity option struck in predetermined
domestic currency and an FX option denoted in domestic currency, respectively.

3.1. Type I

For positive integer n and foreign currency strike price Kf , the foreign equity
power-n quanto call option (struck in foreign currency) converted to domestic
currency has a maturity payoff given by

VT {max (ST −Kf , 0)}n = VT (ST −Kf )
n
1{ST>Kf}

= VT

n∑
j=0

(
n

j

)
Sn−jT (−Kf )

j
1{ST>Kf},(3.1)

where
(
n
j

)
= n!

j!(n−j)! .
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4 J. LEE AND Y. LEE

Theorem 3.1. Under the assumptions of (2.2) with n ∈ N, the price of a
European power-n quanto call option at time t in domestic currency with the
payoff (3.1) is given by

C
(n)
1 (t, St, Vt)

= Vte
−rf (T−t)

n∑
j=0

(
n

j

)
Sn−jt (−Kf )

j
e
(n−j)

{
rf−q+

(n−j−1)σ2S
2

}
(T−t)

N
(
d(n−j)

)
,

where

d(n−j) =
ln St

Kf
+
{
rf − q +

(
n− j − 1

2

)
σ2
S

}
(T − t)

σS
√
T − t

and N (·) denotes the cumulative distribution function for the standard normal
distribution.

Proof. We may write C
(n)
1 as

C
(n)
1 (t, St, Vt)

(3.2)

= e−rd(T−t)EQd

VT n∑
j=0

(
n

j

)
Sn−jT (−Kf )

j
1{ST>Kf}

∣∣∣∣∣∣Ft


= Vte
−rf (T−t)

n∑
j=0

(
n

j

)
(−Kf )

j EQd

[
e
−σ

2
V
2 (T−t)+σV

(
WQd
T −W

Qd
t

)
Sn−jT 1{ST>Kf}

∣∣∣∣Ft].
For a new risk-neutral probability measure Q̃d, the Radon-Nykodým derivative
of Q̃d with respect to Qd is defined by

dQ̃d

dQd

∣∣∣∣∣
Ft

= e−
σ2V
2 t+σVW

Qd
t .

Then Girsanov’s theorem implies that

(3.3) BQ̃d
t = BQd

t − ρσV t

is again a Q̃d-standard Brownian motion. Note then that the Q̃d-dynamic of
St is given by

(3.4) dSt = (rf − q)Stdt+ σSStdB
Q̃d
t

from (2.2) and (3.3). Thus, (3.2) becomes
(3.5)

C
(n)
1 (t, St, Vt) = Vte

−rf (T−t)
n∑
j=0

(
n

j

)
(−Kf )

j EQ̃d

[
Sn−jT 1{ST>Kf}

∣∣∣Ft].
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PRICING SYMMETRIC TYPE OF POWER QUANTO OPTIONS 5

Likewise, for a new risk-neutral probability measure Q̂d, the Radon-Nykodým
derivative of Q̂d with respect to Q̃d is defined by

(3.6)
dQ̂d

dQ̃d
=

Sn−jT

EQ̃d

[
Sn−jT

∣∣∣Ft]
on FT . On the other hand, the dynamics of Sn−jt under the measure Q̃d is
given by

(3.7) dSn−jt = (n− j)
{
rf − q +

(n− j − 1)σ2
S

2

}
Snt dt+(n− j)σSSn−jt dBQ̃d

t

from (3.4). Then Girsanov’s theorem implies from (3.3) that

BQ̂d
t = BQ̃d

t − (n− j)σSt

= BQd
t − {(n− j)σS + ρσV } t(3.8)

is again a Q̂d-standard Brownian motion. Moreover, the Q̂d-dynamics of St is
given by

(3.9) dSt =
{
rf − q + (n− j)σ2

S

}
Stdt+ σSStdB

Q̂d
t

from (2.2) and (3.8). Finally, (3.5) becomes

C
(n)
1 (t, St, Vt)

= Vte
−rf (T−t)

n∑
j=0

(
n

j

)
(−K)

j EQ̃d

[
Sn−jT

∣∣∣Ft]Q̂ (ST > Kf )

= Vte
−rf (T−t)

n∑
j=0

(
n

j

)
Sn−jt (−Kf )

j
e
(n−j)

{
rf−q+

(n−j−1)σ2S
2

}
(T−t)

N
(
d(n−j)

)
from (3.7) and (3.9), where

d(n−j) =
ln St

Kf
+
{
rf − q +

(
n− j − 1

2

)
σ2
S

}
(T − t)

σS
√
T − t

.
�

Now, we consider another symmetric type power quanto option with the
maturity payoff given by

(3.10) VT max {(ST −Kf )
n
, 0}.

This power quanto option’s maturity payoff coincides with the above defined
powered option for odd exponents. For even exponents, i.e., n = 2L for any
L ∈ N, (3.10) can be rewritten as

(3.11) VT (ST −Kf )
2L

= VT

2L∑
j=0

(
2L

j

)
S2L−j
T (−Kf )

j
.
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6 J. LEE AND Y. LEE

Thus, we have the following option pricing formula:

C
(n)
1 (t, St, Vt) = e−rd(T−t)EQd

VT 2L∑
j=0

(
2L

j

)
S2L−j
T (−Kf )

j

∣∣∣∣∣∣Ft


= Vte
−rf (T−t)

2L∑
j=0

(
2L

j

)
(−Kf )

j EQ̃d

[
S2L−j
T

∣∣∣Ft]

= Vte
−rf (T−t)

2L∑
j=0

(
2L

j

)
(−Kf )

j
e
(2L−j)

{
rf−q+

(2L−j−1)σ2S
2

}
(T−t)

by substituting 2L for n from (3.7).

3.2. Type II

For positive integer n and domestic currency strike price Kd, the foreign
equity power-n quanto call option in domestic currency has a maturity payoff
given by

{max (VTST −Kd, 0)}n = (VTST −Kd)
n
1{VTST>Kd}

=

n∑
j=0

(
n

j

)
V n−jT Sn−jT (−Kd)

j
1{VTST>Kd}.(3.12)

Theorem 3.2. Under the assumptions of (2.2) with n ∈ N, the price of a
European power-n quanto call option at time t in domestic currency with the
payoff (3.12) is given by

C
(n)
2 (t, St, Vt)

= e−rd(T−t)
n∑
j=0

(
n

j

)
(−Kd)

j
V n−jt Sn−jt e

(n−j)
{
rd−q+

(n−j−1)(σ2S+σ2V +2ρσSσV )
2

}
(T−t)

N
(
d(n−j)

)
,

where

d(n−j) =
ln VtSt

Kd
+
{
rd − q +

(
n− j − 1

2

) (
σ2
S + σ2

V + 2ρσSσV
)}

(T − t)√
(σ2
S + σ2

V + 2ρσSσV ) (T − t)
.

Proof. We may write C
(n)
2 as

C
(n)
2 (t, St, Vt) = e−rd(T−t)EQd

 n∑
j=0

(
n

j

)
Ŝn−jT (−Kd)

j
1{ŜT>Kd}

∣∣∣∣∣∣Ft


= e−rd(T−t)
n∑
j=0

(
n

j

)
(−Kd)

j EQd
[
Ŝn−jT 1{ŜT>Kd}

∣∣∣Ft],(3.13)

where ŜT = VTST . We note that the Qd-dynamics of ŜT is given by

dŜt = (rd − q) Ŝtdt+ σSŜtdB
Qd
t + σV ŜtdW

Qd
t
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PRICING SYMMETRIC TYPE OF POWER QUANTO OPTIONS 7

from (2.2), which can be rewritten as

(3.14) dŜt = (rd − q) Ŝtdt+
√
σ2
S + σ2

V + 2ρσSσV ŜtdZ
Qd
t ,

where ZQd
t is a new Qd-standard Brownian motion. For a new risk-neutral

probability measure Q̃d, the Radon-Nykodým derivative of Q̃d with respect to
Qd is defined by

(3.15)
dQ̃d

dQd
=

Ŝn−jT

EQd
[
Ŝn−jT

∣∣∣Ft]
on FT . On the other hand, the Qd-dynamics of Ŝn−jt is given by

dŜn−jt = (n− j)

{
rd − q +

(n− j − 1)
(
σ2
S + σ2

V + 2ρσSσV
)

2

}
Ŝn−jt dt

+ (n− j)
√
σ2
S + σ2

V + 2ρσSσV Ŝ
n−j
t dZQd

t ,(3.16)

from (3.14), and hence, (3.15) can be rewritten as

dQ̃d

dQd

∣∣∣∣∣
Ft

= e−
(n−j)2(σ2S+σ2V +2ρσSσV )

2 t+(n−j)
√
σ2
S+σ

2
V t+2ρσSσV Z

Qd
t .

Thus, Girsanov’s theorem implies that

(3.17) ZQ̃d
t = ZQd

t − (n− j)
√
σ2
S + σ2

V + 2ρσSσV t

is again a standard Q̃d-Brownian motion. Moreover, the Q̃d-dynamics of Ŝt is
given by

dŜt =
{
rd − q + (n− j)

(
σ2
S + σ2

V + 2ρσSσV
)}
Ŝtdt

+
√
σ2
S + σ2

V + 2ρσSσV ŜtZ
Qd
t(3.18)

from (3.14) and (3.17). Finally, (3.13) becomes

C
(n)
2 (t, St, Vt)

= e−rd(T−t)
n∑
j=0

(
n

j

)
(−Kd)

j EQd
[
Ŝn−jT

∣∣∣Ft] Q̃d (ŜT > Kd

)

= e−rd(T−t)
n∑
j=0

(
n

j

)
(−Kd)

j
V n−jt Sn−jt e

(n−j)
{
rd−q+

(n−j−1)(σ2S+σ2V +2ρσSσV )
2

}
(T−t)

N
(
d(n−j)

)
from (3.16) and (3.18), where

d(n−j) =
ln VtSt

Kd
+
{
rd − q +

(
n− j − 1

2

) (
σ2
S + σ2

V + 2ρσSσV
)}

(T − t)√
(σ2
S + σ2

V + 2ρσSσV ) (T − t)
. �
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8 J. LEE AND Y. LEE

Again, we consider another symmetric type power quanto option in a similar
type with the maturity payoff given by

(3.19) max {(VTST −Kd)
n
, 0}.

This power quanto option’s maturity payoff coincides with the above defined
powered option for odd exponents. For even exponents, i.e., n = 2L for any
L ∈ N, (3.19) can be rewritten as

(3.20) (VTST −Kd)
2L

=

2L∑
j=0

(
2L

j

)
V 2L−j
T S2L−j

T (−Kd)
j
.

Thus, we have the following option pricing formula:

C
(n)
2 (t, St, Vt)

= e−rd(T−t)EQd

 2L∑
j=0

(
2L

j

)
Ŝ2L−j
T (−Kd)

j

∣∣∣∣∣∣Ft


= e−rd(T−t)
2L∑
j=0

(
2L

j

)
(−Kd)

j EQd
[
Ŝ2L−j
T

∣∣∣Ft]

= e−rd(T−t)
2L∑
j=0

(
2L

j

)
(−Kd)

j
V n−jt Sn−jt e

(2L−j)
{
rd−q+

(2L−j−1)(σ2S+σ2V +2ρσSσV )
2

}
(T−t)

by substituting 2L for n from (3.16).

3.3. Type III

For positive integer n and foreign currency strike price Kf , the foreign equity
power-n quanto call option struck in predetermined domestic currency has a
maturity payoff given by

V0 {max (ST −Kf , 0)}n = V0 (ST −Kf )
n
1{ST>Kf}

= V0

n∑
j=0

(
n

j

)
Sn−jT (−Kf )

j
1{ST>Kf},(3.21)

where V0 is the some fixed exchange rate.

Theorem 3.3. Under the assumptions of (2.2) with n ∈ N, the price of a
European power-n quanto call option at time t in domestic currency with the
payoff (3.21) is given by

C
(n)
3 (t, St)

= V0e
−rd(T−t)

n∑
j=0

(
n

j

)
(−Kf )

j
Sn−jt e

(n−j)
{
rf−q−ρσSσV +

(n−j−1)σ2S
2

}
(T−t)

N
(
d(n−j)

)
,
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PRICING SYMMETRIC TYPE OF POWER QUANTO OPTIONS 9

where

d(n−j) =
ln St

Kf
+
[
rf − q +

{(
n− j − 1

2

)
σS − ρσV

}
σS
]

(T − t)

σS
√
T − t

.

Proof. We may write C
(n)
3 as

C
(n)
3 (t, St) = V0e

−rd(T−t)EQd

 n∑
j=0

(
n

j

)
Sn−jT (−Kf )

j
1{ST>Kf}

∣∣∣∣∣∣Ft


= V0e
−rd(T−t)

n∑
j=0

(
n

j

)
(−Kf )

j EQd
[
Sn−jT 1{ST>Kf}

∣∣∣Ft].(3.22)

For a new risk-neutral probability measure Q̃d, the Radon-Nykodým derivative
of Q̃d with respect to Qd is defined by

(3.23)
dQ̃d

dQd
=

Sn−jT

EQd
[
Sn−jT

∣∣∣Ft]
on FT . On the other hand, the Qd-dynamics of Sn−jt is given by

dSn−jt = (n− j)
{
rf − q − ρσSσV +

(n− j − 1)σ2
S

2

}
Sn−jt dt

+ (n− j)σS§n−jt dBQd
t(3.24)

from (2.2), and hence, (3.23) can be rewritten as

dQ̃d

dQd

∣∣∣∣∣
Ft

= e−
(n−j)2σ2S

2 t+(n−j)σSBQd
t .

Thus, Girsanov’s theorem implies that

(3.25) ZQ̃d
t = ZQd

t − (n− j)σSt

is again a standard Q̃d-Brownian motion. Moreover, the Q̃d-dynamics of St is
given by

(3.26) dSt = [rf − q + {(n− j)σS − ρσV }σS ]Stdt+ σSStdB
Q̃d
t

from (2.2) and (3.25). Finally, (3.22) becomes

C
(n)
3 (t, St)

= V0e
−rd(T−t)

n∑
j=0

(
n

j

)
(−Kf )

j EQd
[
Sn−jT

∣∣∣Ft] Q̃ (ST > Kf )

= V0e
−rd(T−t)

n∑
j=0

(
n

j

)
(−Kf )

j
Sn−jt e

(n−j)
{
rf−q−ρσSσV +

(n−j−1)σ2S
2

}
(T−t)

N
(
d(n−j)

)
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10 J. LEE AND Y. LEE

from (3.24) and (3.26), where

d(n−j) =
ln St

Kf
+
[
rf − q +

{(
n− j − 1

2

)
σS − ρσV

}
σS
]

(T − t)

σS
√
T − t

. �

Once again, we consider another symmetric type power quanto option in a
similar type with the maturity payoff given by

(3.27) V0 max {(ST −Kf )
n
, 0}.

This power quanto option’s maturity payoff coincides with the above defined
powered option for odd exponents. For even exponents, i.e., n = 2L for any
L ∈ N, (3.27) can be rewritten as

(3.28) V0 (ST −Kf )
2L

= V0

2L∑
j=0

(
2L

j

)
S2L−j
T (−Kf )

j
.

Thus, we have the following option pricing formula:

C
(n)
3 (t, St)

= V0e
−rd(T−t)EQd

 2L∑
j=0

(
2L

j

)
S2L−j
T (−Kf )

j

∣∣∣∣∣∣Ft


= V0e
−rd(T−t)

2L∑
j=0

(
2L

j

)
(−Kf )

j EQd
[
S2L−j
T

∣∣∣Ft]

= V0e
−rd(T−t)

2L∑
j=0

(
2L

j

)
(−Kf )

j
S2L−j
t e

(2L−j)
{
rf−q−ρσSσV +

(2L−j−1)σ2S
2

}
(T−t)

by substituting 2L for n from (3.24).

3.4. Type IV

For positive integer n and strike price on the exchange rate Ke, the FX
power-n call option denoted in domestic currency is an equity-linked foreign
exchange option which has a maturity payoff given by

ST {max (VT −Ke, 0)}n = ST (VT −Ke)
n
1{VT>Ke}

= ST

n∑
j=0

(
n

j

)
V n−jT (−Ke)

j
1{VT>Ke}.(3.29)

Theorem 3.4. Under the assumptions of (2.2) with n ∈ N, the price of a
European power-n quanto call option at time t in domestic currency with the
payoff (3.29) is given by

C
(n)
4 (t, St, Vt)

= Ste
(rf−rd−q−ρσSσV )(T−t)
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PRICING SYMMETRIC TYPE OF POWER QUANTO OPTIONS 11

×
n∑
j=0

(
n

j

)
(−Ke)

j
V n−jt e

(n−j)
{
rd−rf+ρσSσV +

(n−j−1)σ2V
2

}
(T−t)

N
(
d(n−j)

)
,

where

d(n−j) =
ln Vt

Ke
+
{
rd − rf + ρσSσV + +

(
n− j − 1

2

)
σ2
V

}
(T − t)

σV
√
T − t

.

Proof. We may write C
(n)
4 as

C
(n)
4 (t, St, Vt) = e−rd(T−t)EQd

ST n∑
j=0

(
n

j

)
V n−jT (−Ke)

j
1{VT>Ke}

∣∣∣∣∣∣Ft


= Ste
(rf−rd−q−ρσSσV )(T−t)

×
n∑
j=0

(
n

j

)
(−Ke)

j EQd

[
e
−σ

2
S
2 (T−t)+σS

(
BQd
T −B

Qd
t

)
V n−jT 1{VT>Ke}

∣∣∣∣Ft].(3.30)

For a new risk-neutral probability measure Q̃d, the Radon-Nykodým derivative
of Q̃d with respect to Qd is defined by

dQ̃d

dQd

∣∣∣∣∣
Ft

= e−
σ2S
2 t+σSB

Qd
t .

Then Girsanov’s theorem implies that

(3.31) BQ̃d
t = BQd

t − σSt

and

(3.32) W Q̃d
t = WQd

t − ρσSt

are again two correlated Q̃d-standard Brownian motions. Note then that the
Q̃d-dynamic of St is given by

(3.33) dVt = (rd − rf + ρσSσV )Vtdt+ σV VtdW
Q̃d
t

from (2.2) and (3.32). Thus, (3.30) becomes
(3.34)

C
(n)
4 (t, St, Vt) = Ste

(rf−rd−q−ρσSσV )(T−t)
n∑
j=0

(
n

j

)
(−Ke)

j EQ̃d

[
V n−jT 1{VT>Ke}

∣∣∣Ft].
Likewise, for a new risk-neutral probability measure Q̂d, the Radon-Nykodým
derivative of Q̂d with respect to Q̃d is defined by

(3.35)
dQ̂d

dQ̃d
=

V n−jT

EQ̃d

[
V n−jT

∣∣∣Ft]
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on FT . On the other hand, the dynamics of V n−jt under the measure Q̃d is
given by

dV n−jt = (n− j)
{
rd − rf + ρσSσV +

(n− j − 1)σ2
V

2

}
V nt dt

+ (n− j)σV V n−jt dW Q̃d
t(3.36)

from (3.33). Then Girsanov’s theorem implies from (3.31) that

W Q̂d
t = W Q̃d

t − (n− j)σV t

= WQd
t − {ρσS + (n− j)σV } t(3.37)

is again a Q̂d-standard Brownian motion. Moreover, the Q̂d-dynamics of St is
given by

(3.38) dVt =
{
rd − rf + ρσSσV + (n− j)σ2

V

}
Vtdt+ σV VtdW

Q̂d
t

from (2.2) and (3.37). Finally, (3.34) becomes

C
(n)
4 (t, St, Vt)

= Ste
(rf−rd−q−ρσSσV )(T−t)

n∑
j=0

(
n

j

)
(−Ke)

j EQ̃d

[
V n−jT

∣∣∣Ft]Q̂ (VT > Ke)

= Ste
(rf−rd−q−ρσSσV )(T−t)

×
n∑
j=0

(
n

j

)
(−Ke)

j
V n−jt e

(n−j)
{
rd−rf+ρσSσV +

(n−j−1)σ2V
2

}
(T−t)

N
(
d(n−j)

)
from (3.36) and (3.38), where

d(n−j) =
ln Vt

Ke
+
{
rd − rf + ρσSσV + +

(
n− j − 1

2

)
σ2
V

}
(T − t)

σV
√
T − t

. �

Once more again, we consider another symmetric type power quanto option
in a similar type with the maturity payoff given by

(3.39) ST max {(VT −Ke)
n
, 0}.

This power quanto option’s maturity payoff coincides with the above defined
powered option for odd exponents. For even exponents, i.e., n = 2L for any
L ∈ N, (3.39) can be rewritten as

(3.40) ST (VT −Ke)
2L

= ST

2L∑
j=0

(
2L

j

)
V 2L−j
T (−Ke)

j
.

Thus, we have the following option pricing formula:

C
(n)
4 (t, St, Vt) = e−rd(T−t)EQd

ST 2L∑
j=0

(
2L

j

)
V 2L−j
T (−Ke)

j

∣∣∣∣∣∣Ft

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= Ste
(rf−rd−q−ρσSσV )(T−t)

2L∑
j=0

(
2L

j

)
(−Ke)

j EQ̃d

[
V 2L−j
T

∣∣∣Ft]
= Ste

(rf−rd−q−ρσSσV )(T−t)

×
2L∑
j=0

(
2L

j

)
(−Ke)

j
e
(2L−j)

{
rd−rf+ρσSσV +

(2L−j−1)σ2V
2

}
(T−t)

by substituting 2L for n from (3.36).

References

[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ.
81 (1973), no. 3, 637–654.

[2] L. P. Blenman and S. P. Clark, Power exchange options, Finance Research Letters 2

(2005), no. 2, 97–106.
[3] R. C. Heynen and H. M. Kat, Pricing and hedging power options, Financial Engineering

and the Japanese Markets 3 (1996), no. 3, 253–261.

[4] Y.-K. Kwok, Mathematical Models of Financial Derivatives, second edition, Springer
Finance, Springer, Berlin, 2008.

[5] Y. Lee and J. Lee, Local volatility for quanto option prices with stochastic interest rates,
Korean J. Math. 23 (2015), no. 1, 81–91.

[6] Y. Lee, H.-S. Yoo, and J. Lee, Pricing formula for power quanto options with each type

of payoffs at maturity, Global J. Pure and Appl. Math. 13 (2017), no. 9, 6695–6702.
[7] W. Margrabe, The value of an option to exchange one asset for another, J. Finance 33

(1978), no. 1, 177–186.

[8] R. G. Tompkins, Power options: hedging nonlinear risks, J. Risk 2 (1999), no. 2, 29–45.
[9] U. Wystup, FX Options and Structured Products, The Wiley Finance Series, 2007.

[10] , Quanto options, MathFinance AG (2008), 1–12.

Jaesung Lee
Department of Mathematics

Sogang University

Seoul 04107, Korea
Email address: jalee@sogang.ac.kr

Youngrok Lee
Department of Mathematics

Sogang University

Seoul 04107, Korea
Email address: yrlee86@sogang.ac.kr

Ah
ea

d 
of

 P
rin

t


