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APPROXIMATE CONTROLLABILITY OF SECOND-ORDER
NONLOCAL IMPULSIVE FUNCTIONAL
INTEGRO-DIFFERENTIAL SYSTEMS IN BANACH SPACES

DUMITRU BALEANU, MANI MALLIKA ARJUNAN, MAHALINGAM NAGARAJ,
AND SELVARAJ SUGANYA

ABSTRACT. This manuscript is involved with a category of second-order
impulsive functional integro-differential equations with nonlocal condi-
tions in Banach spaces. Sufficient conditions for existence and approxi-
mate controllability of mild solutions are acquired by making use of the
theory of cosine family, Banach contraction principle and Leray-Schauder
nonlinear alternative fixed point theorem. An illustration is additionally
furnished to prove the attained principles.

1. Introduction

In this manuscript, we initially look at the next second order nonlocal im-
pulsive functional integro-differential equations of the model

W (1) = tult) + F (t, W) ulea(0), [ s, u<gn+1<s>>>ds)

(L.1) +9 (tvu(gl(t))a"'7u(<p(t))a/0 k2(t757u(gp+1(3)))d5>a

te 7 =1[0b,t#ty, k=1,2,...,m,
(1.2)
u(0) = uo + q(u), u'(0) = o + q(u),
(1.3)
Au(ty) = Ie(u(ty)), AW (ty) = Tk(u(ty)), k =1,2,...,m,
where the unknown w(-) takes values in the Banach space X, and & is the
infinitesimal generator of a strongly continuous cosine family of bounded linear

operators (C(t))ier defined on a Banach space X; 0 =t) < 1 <tg < -+ <ty <
tm+1 = b, are prefixed points and the symbol Au(ty) = u(t{)—u(ty ), Au/ () =
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o' (t5) — W/ (ty,), where u(t]),u(t;) and w'(t]),u/(t;) are represent the right
and left limits of u(t) and ' (¢) at ¢ = ty, respectively. Z(-), 4(-), k1(-), k2(),
q(-), ¢(), Ie(-), Ix(-), &, i=1,2,...,n+1and (;,l = 1,...,p+ 1, are apposite
functions to be identified afterwards.

Differential equations (DEs) is often applied to design the dynamics of nu-
merous real-world phenomena. Many dynamical processes are liable in accor-
dance with unexpected changes in state. Frequently these perturbations is
often periodic and also short length of time comparative to the evolving proce-
dure. These kinds of phenomena are represented well by what are called to as
impulsive differential equations (IDEs), systems of DEs coupled with discrete
mappings in state space. Consequently, IDEs-that is, DEs involving impulse
effects - appear as a natural information of noticed evolutionary phenomena
of various real-world issues. For fundamental concepts about this theory and
on its applications, we suggest the reader to refer [6,14,16,24,29]. In the past
few years, impulsive integro-differential equations have grown to be an impor-
tant area of research simply because of their applications to diverse problems
coming up in communications, control technology, impact mechanics and elec-
trical engineering. On the other hand, the related theory of impulsive integro-
differential systems in abstract spaces is even now in its developing phase and
many factors of the concept stay to be resolved.

The concept of control theory is to create systems execute certain tasks by
employing acceptable control behavior. Among the list of essential aspects in
current mathematical control theory, controllability performs an crucial factor
in deterministic control theory and engineering. The idea of controllability is
centered on the mathematical account of the dynamical system. In accordance
with control theory, a dynamical system is controllable if, with a proper op-
tion of inputs, it is usually influenced from any initial state to any preferred
last state within specific time. In the mathematical perspective, the issues of
exact and approximate controllability are to be distinguished. Exact control-
lability allows to steer the system to arbitrary final state while approximate
controllability signifies that the system is usually steered to arbitrary small
neighborhood of final state. Especially, approximate controllable systems are
more common and frequently approximate controllability is fully acceptable
in applications. There are actually a lot of papers on the exact and approxi-
mate controllability of the different kinds of nonlinear systems under various
hypotheses (see for instance [5,8-10,13,15,18-21,23,27,28,30] and references
cited therein). Second-order differential and integro-differential equations pro-
vide as an theoretical formulation of several integro-differential equations which
occur in problems linked with the transverse motion of an extensible beam, the
vibration of hinged bars and various other physical phenomena. So it is very
huge to concentrate the controllability issue for such systems in Banach spaces.

The literary works relevant to existence and controllability of second-order
systems with impulses continues to be restricted. Chang et al. [1] analyzed
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a class of second order IDEs with state-dependent delay by employing a suit-
able fixed point theorem bundled with concepts of a strongly continuous cosine
family of bounded linear operators.. Sakthivel et al. [22] studied the control-
lability of second-order impulsive systems in Banach spaces without imposing
the compactness condition on the cosine family of operators under Banach con-
traction mapping principle. In [2—4], the authors discussed the different types
of second-order impulsive differential systems with different conditions on the
given functions. The results are obtained by using the classical fixed point
theorems. Dimplekumar N. Chalishajar [7] analyzed the controllability of a
partial neutral functional differential inclusion of second order with impulse
effect and infinite delay without assuming the compactness conditions of the
family of cosine operators and also author introduced a new phase space axioms
to derive the results. Lately, Meili Li and Junling Ma [17] studied the approx-
imate controllability of second order impulsive functional differential systems
with infinite delay in Banach spaces. Sufficient conditions are formulated and
proved for the approximate controllability of such system under the assumption
that the associated linear part of system is approximately controllable. How-
ever, it needs to be pointed out, to the best of our knowledge, the existence
and approximate controllability results for second-order impulsive functional
integro-differential equations with nonlocal conditions of the form (1.1)-(1.3)
has not been examined yet. According to fixed point techniques, the proposed
work in this manuscript on the second-order functional integro-differential sys-
tems with nonlocal and impulsive conditions is new in the literature. This fact
is the important objective of this work.

The structure of this manuscript is as per the following. In Section 2, some
fundamental certainties are reviewed. Section 3 is dedicated to the existence of
mild solutions to problem (1.1)-(1.3). The approximate controllability result is
shown in Section 4. In Section 5, a case is given to delineate our outcomes.

2. Preliminaries

In this section, we review some basic concepts, notations and properties
needed to establish our results.

Definition 2.1 ([17]). A one parameter family {C(t) : t € R}, of bounded
linear operators in the Banach space X is called a strongly continuous cosine
family if and only if

(i) C(s+1t)+ C(s—t) =2C(s)C(t) for all s,t, € R;
(i) C(0) = I
(iii) C(t)u is strongly continuous in ¢ on R for each fixed u € X.

Throughout this work, o is the infinitesimal generator of a strongly con-
tinuous cosine family, {C(¢) : t € R}, of bounded linear operators defined on a
Banach space X endowed with a norm || - ||. We denote by {S(t) : ¢t € R} the
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sine function associated to {C(t) : t € R} which is defined by
t
S(t)u = / C(s)uds for uweX and teR.
0

Furthermore, M; and M, are positive constants such that ||C(¢)|| < M, and
IS < M, for every t € 7.

The infinitesimal generator of a strongly continuous cosine family {C(¢) :
t € R} is the operator & : X — X defined by

d2
g u = @C’(t)uh:o, ue D),

where 2(«7) = {u € X : C(t)u is twice continuously differentiable in ¢}, en-
dowed with the norm

[uller = llull + | ull,  we ().

Define E = {u € X : C(t)u is once continuously differentiable in ¢}, en-
dowed with the norm

[ule = |lull + sup [[&S(t)ull, uEE,
0<t<1

then E is a Banach space. The operator valued function G(t) = [ﬂ%t&) g((g}

is a strongly continuous group of bounded linear operators on the space E x X
generated by the operator A = [ s 6} defined on 2(«) x E. It follows from
this that &7 S(t) : F — X is a bounded linear operator and that «S(t)u —
0, t = 0, for each u € E. Furthermore, if u : [0,00) — X is a locally integrable
function, then z(t) = fg S(t—s)u(s)ds defines an E-valued continuous function.
This is a consequence of the fact that

/Ot Gt —s) [ u?s) ]dsz [ /Ot S(t — s)u(s)ds, /Otc(t—s)u(s) ds

defines an E' x X-valued continuous function.
The existence of solutions for the second order abstract Cauchy problem

u'(t) =u(t) + h(t), te # =][0,0],
(2.1) { u(0) =z, 4/ (0)=uw, 7

T

where h : _# — X is an integrable function has been discussed in [25]. Simi-
larly, the existence of solutions of the semilinear second order abstract Cauchy
problem has been treated in [26]. We only mention here that the function w(-)
given by

u(t) =C(t)z + S(t)w + /Ot S(t—s)h(s)ds, te 7,
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is called mild solution of (2.1) and that when z € E, wu(-) is continuously
differentiable and

u'(t) = dS(t)z—i—C(t)w—s—/tC(t —s)h(s)ds, te 7.

For additional details about cosine function theory, we refer to [12,25,26].

To take into account the impulsive conditions (1.1)-(1.3), it is easy to present
some more aspects and notations.

A function u : [0, 7] — X is considered to be a normalized piecewise contin-
uous function (NPCF) on [0, 7] if u is piecewise continuous and left continuous
on (o,7]. We represent by PC([o,7],X) the space of NPCF from [o, 7] into
X. Especially, we present the space PC formed by all NPCF w : [0,0] — X
in ways that u is continuous at t # ¢, k = 1,...,m. It is obvious that PC
rendered with the norm || u ||[pc= sup || u(s) || is a Banach space. Likewise,

s€ g

PC' will be the space of the functions u(-) € PC such that u(-) is contin-
uously differentiable on ¢ — {t; : k = 1,2,...,m} and the lateral deriva-
tives u/p(t) = lim, o+ ultts)—u@h) o (t) = lim,_,o- =20 4re contin-
R s—0 s » s—0 s

uous functions on [tg,tr4+1) and (tx,tk+1], respectively. Next, for u € PCt
we represent by u/(t) the left derivative at ¢ € (0,b] and by «/(0) the right
derivative at zero.

In what follows, we set tg = 0, t,,4+1 = b, and for u € PC we signify by g,
for k = 0,1,...,m, the function u, € C([tk,tr+1];X) given by g (t) = u(t)
for t € (tx,tr+1] and ug(ty) = hmtﬁtz u(t). Moreover, for a set B C PC, we

represent by By, for k=0,1,...,m, the set By, = {ty : u € B}.

Lemma 2.1. A set B C PC s relatively compact in PC if, and only if, each
set By, k=0,1,...,m, is relatively compact in C([t;,t;y1],X).

Now, we are in a position to present the mild solution for the system (1.1)-
(1.3).

Definition 2.2. A function u(-) € PC(_#,X) is said to be a mild solution to
the problem (1.1)-(1.3) if it satisfies the following integral equation

u(t) = C()[uo + q(w)] + 5(t)[to + q(u)]

/ (0= 5)| 7 (5066, un(s). [ bl ul6unr (r))ar )

n %( w(G()s- - u(o(s)), / k(s u<<p+1<r>>>dr)} s
iy thftklk Zstftkfk ( )), tEj.

0<trp<t 0<trp<t

The key tool in our approach is the following fixed point theorem.
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Lemma 2.2 (Leray-Schauder Nonlinear Alternative [11]). Let X be a Banach
space with Z C X closed and convez. Assume that U is a relatively open subset
of Z with0eU and Y : U — Z is a compact map. Then either

(i) Y has a fived point in U, or
(ii) there is a point v € OU such that v € XY (v) for some X\ € (0,1).

3. Existence results

In this section, we present and prove the existence results for the problem
(1.1)-(1.3). In order to utilize Lemma 2.2, we need to list the subsequent
hypotheses:

(H1) The functions 7 : 7 x X"*! — X and ¢ : 7 x XP*! — X are

continuous and there exist constants . > 0, Z > 0,4 >0, .,2”1 >0
such that for all z;,y; € X, ¢ = 1,...,n+ 1 and z;,y; € X, [ =
1,...,p+ 1, we have

n+1
I F100s) = F (s ldots, ) |22 Y- Lo il

i=1

and

p+1
H g(ta XT1,T2,... 7xp+1) - g(tvyl7y27 ey yp+1) ||§ j(z ||xl - yl”)
=1

with £ = max II-# (¢t,0,...,0)| and 2= mang(t,O, S0
(H2) The func‘monb ki ke : Fx 7 xX— Xare contmuoub and we can find
constants A4 > 0, JV>O M >0, J1/1>Osuchthatf0rallx y €X,
k1t s,2) — ki (E, s, )| < A e =y
and

ko (t, s,2) — ka(t,,9)]| < A2 —yl|

with 4] = o Jnax. ||k:1(t s$,0)| and M = o Jnax. ||k2(t 5,0

(H3) Thefunctionsfl.jﬁj,Z—l, n+1and§l./—>/,l=
1,...,p+1 are continuous functions such that &(t) <t,i=1,...,n+1
and ¢(t) <t, l=1,...,p+ 1.
(H4) (1) Ir € C(X,X), k =1,...,m are all compact operators, and there
exist continuous nondecreasing functions ¥y : [0,00) — (0, 00),
k=1,...,m, such that

k()] < $r(||ul]) for each u € X.

(i) I € C(X,X), k = 1,...,m are all compact operators, and there
exist continuous nondecreasing functions ¥y : [0,00) — (0, 00),
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k=1,...,m, such that
I Tr(w)]| < Wr(|ul]) for every u € X.

(H5) (i) The function ¢(-) : PC(_#,X) — X is continuous and we can find
a6 € (0,41) in a way that q(¢) = ¢(¢) for any ¢, € PC( 7 ,X)
with ¢ = ¢ on [,0].

(ii) The function ¢(-) : PC(_#,X) — X is continuous and we can find
a 6 € (0,41) in ways that §(¢) = §(¢) for any ¢, € PC( 7 ,X)
with ¢ = ¢ on [0, b].

(iii) There is a continuous nondecreasing function A : [0, 00) — (0, 00)
in a way that

la@)l < A(l[8llpc), ¢ € PC(F,X).

(iv) There is a continuous nondecreasing function A : [0, 00) — (0, )
in a way that

@)l < Alll¢llpe), 6 € PC(F,X).

(H6) We can find a constant M* > 0 in a way that
(3.1)
M*

M.+ 51 [AGT) + 3£ ()| + e | R + 3 %@)H

> 1,

en
k=1

where 7 = Mob[(Ln + Lp) + b(LN + LN)], M, = Mluo| + Ma|aol| +
Wb [MZM + ZR) + (4 + A
Theorem 3.1. Let u(0),u'(0) € X. If assumptions (H1)-(H6) are fulfilled,
then the impulsive nonlocal Cauchy problem (1.1)-(1.3) has at least one mild
solution on fZ .
Proof. Let %y = 2M, (ﬂn—i—,{;p) +(&ZN +§</17)b] and we introduce in the
space PC(_#,X) the equivalent norm defined as

[¢llv = sup e~ |g(t)]].

te g

Then, it is easy to see that V := (PC(_#,X), || - ||v) is a Banach space. Fix
vePC(7,X)and fort € #,¢ €V, we now define an operator

(3.2)

(Tu9) (1)
= C(t)[uo + q(v)] + S(t)[to + q(v)]

/ S(t —s) [ <8,¢(§1(S)),---7¢(£n(8))7 / S k1<s,7,¢<fn+l(f>>>df)
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Yo Clt—t)wte) + Y St —te)Tk(v(tr)).

0<tr<t 0<tp<t

Since C(-)(uo + g(v)) and S(-)(uo + g(v)) are belongs to PC(_#,X), it allows
from (H1)-(H3) that (Y,¢)(t) € V for all ¢ € V. Allow ¢, ¢ € V, we obtain

e~ | (Tuh) (1) — (Tu) (1)
<t [t =57 (6660 00660, [ o blensatrar

0
t
+ effot/
0

ds

St =) (50661 ) 000D [ Bl 2 8(Gpa (7))

ds

< 1\725/016‘3“ [II¢(€1(S)) = P& () + -+ [8(6nls)) = D& (s)]

Jas

+ 1\72:?7/0 e~ {Ilcﬁ(Cl(S)) = (GENN+ -+ 116(G(5) — (G5

Jas

+

[t mbtenna@Nar - [ katsi 36 (r)ir
0 0

+H/O k2(3,7,¢((p+1(7')))d7—/5 ka(s,7,(Gpia (7)))dr

0

t
S [6’%5“” sup e~ %% p(s) — 3(s) | + -
0 se€ g

+ A0 sup 0 (5) = ()| + A [ [6l6nra(r)) - &F(fm(r))ndr} ds
se g 0

t
ST Y [eo%cﬂs) sup e~ %0%|g(s) — 3(s)|| + -
0 s€ g

400 sy o) — 5|+ [ 19(Gra(r)) - $<<p+1<r>>||df] ds
se g 0
i
< Ty / ot [nf sup ¢~ %0%|b(s) — 3(s)|
0 s€ g

N sy e~ o) — G d
s€ g
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o~ t ~
A {pe»%s sup e=20%||¢(s) — (s)||
0 s€ g

+ J%efon+1(s) sup e_fos”(b(s) — (Z(S)||:| ds

s€ g

< e / ~o(t-3) [n sup ¢~ %*[lg(s) — 3(s)]
s€ g

Wb sup oD (s) — q?(s)} ds
H
o~ t ~
+ MQ.,S,”/ e~ Zo(t=s) [p sup e~ p(s) — o(s)||
0 se g
b sup %% (s) - 55(5”} y
H1
e~ t ~
< VoL(n+ M) / %00 dsl|¢ — By
—_— —~ NO t ~
+ BZ(p+ D) / e~ %05 s||6 — |y
0

—~— ~—~ —~— t ~
< M, [(zn + ZLp) + (LN + zmb] / e~ 209 ds||p — By
0

M, [(.Zn + L)+ (LN + 3&7)1;]
<
< %
which indicates that

A (T,0)(0) ~ (MD)W < 516 = Flv, b€ 7.

‘|¢_5HV7 te /a

Hence
~ 1 ~ ~
1706 = Todlly < 5110 = dllv, 6, € V.

Thus, the operator T, is a strict contraction. By the Banach contraction
principle, we observe that T, has a unique fixed point ¢, € V and the equation
(3.2) has a unique mild solution on [0, b].

Fix

o fey ifte (@,
”(t)‘_{v(& it t € [0,d].

From (3.2), we have

65(t) = C(B)[uo + 4(®)] + S0 + 7))
+ /0 s<t—s[ (w e bnln(s), [ k1(5m¢55(€n+1(T)))dT>



10 D. BALEANU, M. M. ARJUNAN, M. NAGARAJ, AND S. SUGANYA

+g<57¢5(C1(8)),~--,%(Cp(é’))a / k(s ¢a<<p+1<r>>>df>}ds
(33) + Z Ct—tk Ik Z St—tk Ik ( ))

0<tp<t 0<tp<t

Consider the map I' : PCs = PC([d,b],X) — PCs defined by
(Tw)(t) = ¢5(t), t € [4,0].

We should demonstrate that I' fulfills every one of the states of Lemma 2.2.
For better understandability, the proof is going to be presented in a few stages.

Step 1. I" maps bounded sets into bounded sets in PCs.
In fact, it is sufficient to demonstrate that we can find a positive constant

Ay in ways that for every v € B,(§) = {¢ € PCs; sup |o()| < r} one has
5<t<b

[Tvllpc < As.
Let v € B,.(d), then for ¢ € (0,b], we have

l6s(0)]
< CWluo + a@ + 15(0) 0 + 7@
n /O S(t— )7 ( So(61(5)r - (5D, [ m(s,T,asa(an(r)))dT)
S(t— 59 ( 55615 0565, [ Bt %(Cpﬂ(ﬂ))dT)

+/ t
Y oo- tk)Ik(v(tk))H -

O<tp<t

< Mi[lluo + g(@)]] + Moo + G(@)]I]

ds

ds

> 8- tTu(e(o)|

O<trp<t

m

+M1Z||Ik (tk) ||+M2Z||Ik te))l

k=1

1, / t |7 (s n(eato). [ Balosrs bt (r))ar
— F(s,0,... ,o)H + 25,0, .. .,0)||}ds

+ / _ %(s,w(cl(s)), e (G(9)), / s, ¢5(Cp+1(7)))dT)
—%(s,O,...,O)H + |%(s,0,...,0)|]ds
< ¥ [uoll + @) + Mall@ol + 13@)]

+ M, Z Ui ([lo(t)) + My Z T([lo(t))
k=1 k=1
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+Z\A42/O {x[ sup [ d5(s)l| +- + sup [gs(s)]

s€(0,b] s€(0,b]

- ks (.7, 65(Enen (7)) — K (5 7, )| + [k (5.7 o>||1dr} +$1}ds

+M2 {é{ sup [[65(s)| +---+ sup [|és(s)]
s€(0,b]

s€(0,b]

n / ke, 7, 65(Goia (7)) — k2<s,r,o>||+||k2<s,r,o>||]df] +$1}ds

< Mi[l|uoll + A([B]lpe)] + M|l + A(|[7]|pc)]

+ M0 Y Wi(flolte)ll) + Mz Y Wa([lo(t)l)

k=1 k=1

t
o3 [ {g [n sup o >||+b<w - ||¢g<s)||+m> +.$1}ds
0 SG( 56(0717]
t o~ o~ o~
i {z . >||+b<w sup [l g(s >||+m> uﬂl}ds
0 s€(0,b] 5€(0,b]

—~

< M, + J/\Z1A(T) + MQK(T) + ]/\21 Z \Ifk(’l“) + J/\ZQ Z \T/k(T)

k=1 k=1
_ e t
+M2{($n+$p)+b($w+$m]/ sup ||és(s)llds,
0 s€(0,0]

where M, = M |luol| + Ma|[@o|| + Mab [b(zm L P+ (L + E)}.
Utilizing the Gronwall’s inequality, we obtain

SHPH¢U( )” < eﬁzb[($n+%)+b($ﬂ+§ﬂ]

(0,b]
| M, + M, [A(r) + i \Pk(r)} + M, [K(T) + f: @k(r)}
k=1 k=1
Thus
ITo|pe < " | M, + M; {A(r) + i \I/k(r)} + M, [X(r) + i \le(r)} = As.
k=1 k=1

Step 2. T is continuous on B,.(J).
From (3.2) and (H1)-(H5), we consider that for vq,vs € B.(d), t € (0,b],

65, () = ¢, ()|
< [[C®)la(wr) = q()]ll + [1S®)[g(01) — g(@)]]



12 D. BALEANU, M. M. ARJUNAN, M. NAGARAJ, AND S. SUGANYA

> Clt—te)(vi(t) = > Ot —te)I(va(te))

0<trp<t 0<tp<t
H DD S t)Te(vi(tr) — > S(ttk)Ik(UQ(tk))‘
O<tk<t O<tp<t

{ <3 ¢z, (€1(5)), - - -, 0, (fn(s))7/os ki (s, T, qsgl(gnH(T)))dT)

(s D5a(€1(5)), - 6y (€n(5)), / (s, 6 () ) | o

[ st (s.om @, on o, [ hats.man Gouatrier)

<s, 656N 05 G6D): [ BalsmaGa(rr ) | s

< Millg(d1) — q(@)I| + Mal|g(a1) — G(a)l| + My Y [ Tu(vr (te)) — In(va(ti)]
k=1

+ Mo Y | Ti(vi(t)) — Ta(va(t)
k=1

+ Mo ¥ / t [||¢‘51 (€1(5)) = G (E1() + -+ + |6, (n(5)) — 65 (€ (5))]
[ TG, 05, Ena (1)) — s o Gl s
+Mo.Z / t [n% (C1(9)) = 6w, (G + -+ + 165, (Gp(9)) = 65, (Gp(9)]
+ / k(o7 65, (G (7)) — s, ¢52<<p+1<r>>>||1dr} ds

< Millg(01) — q(@)I| + Mallg(o1) — G(@)l| + My Y [ Tu(vr (te)) — In(va(ti)]

k=1
+M2Z||fk vr(te)) = Ik(v2(fk))||+M2i”/ { sup ||z, (s) — d3, (s) [+
1 s€[0,b]

+ sup |65, (s) = ¢52(8)||+</V/0 ||¢51(§n+1(7'))—¢52(§n+1(7))||d7}d3

se(o,

+M2-5f/ [ sap 163, (s) = dw, (s)[| 4+ sup |[|¢g, (s) — ¢, ()l
s€[0,b]

7 / 165, (Coea (7)) — 6, (cpﬂmncﬂ s
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< Mi|g(d1) — q(@)I| + Mal|g(a1) — G(a) || + My Y [ Tu(vr (te)) — In(va(ti)]

k=1
+ My Z [ (v1(tr)) — T (va(te)) |l + Mz.f/ {n sup ||éw, () — ¢z, ()|
k=1 o L seo,b]
F b sup [65,(5) = 6, (0] s
s€[0,b]

—_— t —_—
TR [ [o sup 165,09 = 659 + 7 sup [5,(5) ~ 6, (5]
0 s€[0,b] s€[0,b]

< 3 la() - @l + Y- 1iloa(w)) = leateuDl| + T | 17050) - )]
k=1

© 3 Telon (b)) - 1k<v2<tk>>||}
k=1

- . o t
3 [(xn + Tp) 1oL+ .fam] / sup o, (3 — 0, 5
se|0,

Making use of Gronwall’s inequality just as before, for ¢, vy, v, as above

sup ¢, (t) — ¢, ()]l
€[0,b]

S

< [A? 14(58) = aE)] + Y- 1uon00)) = Duoa(tl| + T I050) - ()

k=1
+ ) Tk (oa(ts)) — Ik(vz(tk))IIHe”
k=1

for all ¢ € [0,b], which implies that

[Tv1 — Tz |[pc

< B la) - @) + 3 1501 (00) - RCen(e)l| + T I(a0) - )

k=1

3 el (1)) — fkwg(tk»nﬂ e
k=1

for all ¢t € [4,b],v1,v2 € B,(d). Thus, the operator I' is continuous.

Step 3. I' is a compact operator.
To this end, we consider the decomposition I' = I'y 4+ I's, where I'y and 'y
are the operators on B,.(d) defined respectively by

(Tyo)(t) = C(8)[uo + q(v)] + S(8)[uo + ¢(v)]

+/ ‘St 5)7 (1565061 05(6a9). [ (o7 n(6nns () ) s
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+/0 S(tfs)g<s7¢;;((1(s)) ..... qbg(Cp(s)),/O k2(87T7¢5(<p+1(7')))d7'>d8,

t € 6,0,
Cao)(t) = Y Clt—t)(v(ts) + > St—ti)Tk(v(tr)), t € [6,0].
0<tp<t 0<tp<t

We first show that I'y is a compact operator.

(i) T'1(B,-(9)) is equicontinuous.
Let 6 <7 <79 <0, and € > 0 be small, note that

‘ 7 ( So(6s(5) - (65D, [ (s %@mm»m) ‘

< |7 (s ont@s. 05606, [ atoimdolenna(ir) - (0.0
+||-#(s,0,...,0)|

< 2| los(@ )]+ + sl 6D + H [ s mstensatrir

|+

<z[ s 53]+ + st 55|
s€[4,b]

+
N

|k1 8,7y 5 (Ens1 (7)) — ka1 (s, 7, 0)|| + || k1 (s, T, 0)||]d7'} + 4

}+$1

A sup ||gi(s)l| + M

s€[8,b]

Sf{n sup |[¢5(s)]| +b

s€[8,b]

< Z | (n+Ab) sup [|é5(s)] +bM

s€[6,b]

< ZLln+ Nb)r+b M|+ L =M™

+2

and

|9 (5265000 0D, [ el on(Ga(rir

+14(s,0,...,0)]

< Z{Ios(QeDl + -+ + [6s(G(s)] + H [ et bnlpna(rar

} + A
<.§{ sup os(a)] -+ s [l
s€[4,b]

/0 [lk2(s, 7, ¢35 (Cpt1(7))) — k2(s, 7, 0)[| + [ ka(s, 7, O)||]d7'] +.%
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}+Z

< g{p sup [|¢z(s)|| +b
S€E[8,b]

N sup | dw(s)| + M
S€E[8,b]

< Z |+ Hb) sup [lgs(s)|| + M| + A
sSE€[4,b]

< ZLlp+ Nb)yr +b M|+ 21 = M.
From the above estimations, we have

[T1v(r2) — Tro(m)||
< |[C(r2) = C()][uo + @Il + [[[S(72) — S(m1)][o + g(D)]]

+ / S(12 —s) (S #5(61(8)), .-, b (&nls /0 ki(s, 7, ¢5(Engr (T )))d7'>d3
— [ 5= 97 (s.05((6D. - 05606, [ bl () )
T Y e ( 055D, 0565, [ Rl ¢a(Cp+1(T)))dT) s

S

- /0 "S- (s, 63(C1())s -+ 93(Co(5)), /0 e ¢a(cpﬂ<¢)>>dT) s
< [[C(72) = C(m1)][uo + qg(@)]|| + [|[S(72) — S(m1)][uo + q(0)]||
n / " s = 5) = S0m - s)]ﬁ(s,m(a(sn ..... onlento) | (s, %(gnﬂ(rmdr)

o/

+ / S(rs - 5)7 (m&(s)) 63(6als)), /Oskus,r,%(snﬂ(ﬂ))dr) a

s
g

+ [ |- )%( 3G9 85(G ). [ k(s m(cpmf)))dr) a
< [C(72) = C(m1)][uo + q(@)]|| + [|[S(72) — S(m1)][uo + q(0)]||

T1

+ 1\7/ 1S(m2 — 8) = S(1 — s)||ds + M/ 1S(r2 — s) — S(r1 — s)]||ds
0

T1—€

ds

ds

S(rs— 8) = S(r1 — 8)|.F (g&v(gl())?.‘.,%(&(s)), /Obk1(8m¢5(€n+1(‘r)))d7>

[S(r2 — 5) — S(ry — )} ( 6o(CL())s -2 65(Co(5)), / k(s %(CPH(T)))dT) a

ds

S(rg —8) = S(m *5)] ( o5(Ci(s ))7-~~7¢E(Cp(8))7/; ka(s, T, ¢F(Cp+1(7)))d7—>

T1—€

#3 [CStra = s)lds + 37 [ 182~ 5) = S~ 5)lds
T1 O

- Mf*/ [S(r2 — s) — S(m1 — s)||ds + Mf*/ [S(72 — s)||ds.

We see that ||[Tv(m) — T'v(m)|| tends to zero independently of v € B,.(9)
as 7o — 11 — 0, since the compactness of the operator S(t) for ¢ > 0, implies
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the continuity in the uniform operator topology. Thus, I'y maps B,.(d) into an
equicontinuous family of the functions.

(ii) The set I'1(B,.(0))(t) is precompact in X.

Let 6 <t < s < b be fixed and € a real number satisfying 0 < € < t. For
v € By(6), we define

(Tue0)(t)
— )0 + a®)] + S(O)fio + 30)]
+[ sty [a@(sm(a(s)),...m(sn(s)), [ s ¢a(§n+1(7)))d7>

9 (5,656 056 [l ¢5(Cp+1(7)))d7)]d5-

Working with the compactness of C(t) for ¢ > 0, we deduce that the set
{(T'1,ev)(t) : v € Br(6)} is precompact v € B,(4) for €,0 < e < t. Furthermore,
for each v € B,(0) we sustain

[(T10)(8) = (Trev) @)l

t
S /
t—e

n g(S’ G5(C1(9)), - - -, d(Co(s)), /O ka(s, T, m(CpH(T)))dT)] ’

s

50 5) |7 (5.06(@6). - 65(60(6), [ ha(ormdu(Enna ()

ds

t
< Mz/ (M** + M;™)ds
t—e

< M\Q(]/Vf\** + J/W\l**)e

Therefore, there are precompact sets arbitrarily close to the set {(I'1v) :
v € B,(§)}. Hence the set {(I'yv) : v € B,.(d)} is a precompact in X. It
is easy to see that I'y(B;(d)) is uniformly bounded. Since we have proven
that Ty (B,-(d)) is an equicontinuous collection, by the Arzela-Ascoli theorem it
suffices to demonstrate that I'; maps B,.(d) into a precompact set in X.

Next, it stays to check that I's is also a compact operator. From [1, Theorem
3.2], we observe that I'y is compact operator and hence I is a compact operator.

Step 4. We now reveal that we can find an open set U C PCs with v ¢ A\['v
for A € (0,1) and v € OU. Let A € (0,1) and allow v € PCs be a possible
solution of v = AT'(v) for some 0 < A < 1. Therefore, for every t € (0, b],

v(t) = Adg(t) = AC(t)[uo + q(v)] + AS(t)[uo + G(v)]

A st 7 (5056, 65(6n(oD, [ s,
9 (5,056 056 [ o ¢a<<p+1<f>>>dr>} ds
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+A D Ot —t)T(o(te) + X D S(t—te)Tw(v(tr))-

0<tr<t 0<tr<t
This suggests by (H1)-(H5) and for each t € (0, ], we have ||v(t)|| < ||¢(t)]]

and

o5 ()]l
< 1C(®)[uo + g + [15(#)[wo + g(0)]|

/ S(t—8)7 ( B5(€1(5)), -, B5(6nl5)), /0 Sk1<s,f,¢a<sn+l<7>>>d7) ds

S(t—s) <S,¢5(C1(5))’---»%(Cp(é‘))v/oskz(S,T»%(CpH(T)))dT) ds
Z C(t —ti) e (v(tr) H > St —t)Th(v(t ))H
0<trp<t O<trp<t
< WL+ T [Auwnm) 0y wnv(tkm} T, [Tx(nanm) 0y \ikuv(m)]
k=1 k=1

L o t
L [wn Doy b LN+ zm} | suw lostlas
0 SG(O,b]

where M, = M, |[uol| + Moa||tio|| + Mab [b(zm L P+ (L +.Z)}.

Utilizing the Gronwall’s inequality, we obtain

sup [| ¢z (s)]l
(0.0]

<e”

.+ 50 | A([7le) + Y- #allolme)| + 72 | K(lolpe) 30 |v|7>cH
k=1

and the previous inequality holds. Consequently,

vllpe < e”

. + 5 [A([Tle) + Y- Ballplle)| + 32 | A(17lme) + vam)”

k=1 k=1

and therefore

lvllpe

e [M*H% |:A(|77|7>c)+§31 wkuvlpc)} +M; {K(|ﬂ|pc>+kfiﬁk(|v|m>”

From the hypothesis (H6), we can find a constant M~ such that [|v]|pe # M.
Set
U= {v € PC([6,b],X); sup [v(t)] < 1\7} .
5<t<b
As an outcome of Steps 1-3 in Theorem 3.1, it suffices to demonstrate that
I': U — PCs is a compact map.
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With the selection of U, there is no v € OU in a way that v € Al'v for
A € (0,1). As being a end result of Lemma 2.2, we consider that the operator
I has a fixed point U, € U. Thus, we obtain

u(t) = C(t)[uo + q(@0.)] + S () [uo + q(vs)]

/ (¢ 5)|# (s, ue ) w6 o), [ halsiu(En(r)ar )

+%<s,u<<1<s>>,...7u<<p<s>>, kol (G () ) s

0

(B4)  + Y Cl—t)lk(w(t) + Y St~ tw)Tk(v(te).

0<tr<t 0<tr<t

Noting that u = ¢35, = (T0.)(t) = Vs, t € [4,b]. By (H5)(i)(ii), we obtain
q(u) = q(v,) and q(u) = q(v,). This suggests, joined with (3.4), that wu(¢)
is a mild solution of problem (1.1)-(1.3). This completes the proof of this
theorem. 0

4. Approximate results

As an application of Theorem 3.1, we shall consider the system (1.1) with
control parameters such as:

u”(t) = ﬂu(t) + 7 (t, u(€1 (t))’ te 7u(§n(t))7/0 kl (t7 5, u(§n+1(s)))d8>

" (t,u«a(t)), ol [ kz(t787u(Cp+1(8)))dS> T Bag),

(4.1) te 7 =[0b], t£ty, k=1,2,...,m

with the conditions (1.2) and (1.3). The functions % (-), 4(-), k1(-), k2(-), q(-),
ai), In(-), Ti(), &, i =1,2,...,n+1and ¢, [ = 1,...,p + 1, are same as
defined in (1.1)-(1.3). The control function u(-) € £?(_#,U), a Banach space
of admissible control function with U as a Banach space and B is a bounded
linear operator from U to X.

Definition 4.1. A function u(-) € PC(_#,X) is said to be a mild solution of
problem (4.1) with the conditions (1.2) and (1.3) if it satisfies the following
integral equation

wl®) = C)luo + a(w)] + S(8) o + (w)]
/ S(t - s [ (syu@l(s))y...,u@n(s)), A k1<s,77u<sn+1<f>>>df)
+g(s,u<<1<s>> u(Gy(s)), / k(s (o (7 )))dT) +Ba<s>} ds
+ Z Ct—tka Z St—tkfk (u(t )), tE/.

0<tp<t 0<tp<t
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Definition 4.2. The control system (4.1) with the conditions (1.2) and (1.3)
is said to be approximately controllable on _¢# if for all ug € X,, there is some
control u € .Z?(_#,U), the closure of the reachable set, R(b,uo) is dense in X,
ie., R(b,up) = X, where R(b,up) = {u(b,u) : u € L*(_#7,U),u(0,0) = up} is
a mild solution of the system (4.1) with the conditions (1.2) and (1.3).

In order to address the problem, it is helpful now to present two significant
operators and essential presumptions on these operators:

b
T, = / S(b— s)BB*S*(b— s)ds : X — X,
0

R(%,Tg) = (T +Tg) ' : XX, 0<y<]1,
where B* denotes the adjoint of B and S*(t) is the adjoint of S(¢). It is

. ~b . .
straightforward that the operator T is a linear bounded operator.
To investigate the approximate controllability of system (4.1) with the con-
ditions (1.2) and (1.3), we impose the following condition:

(HO) vR(%Tg) — 0 as v — 07 in the strong operator topology.

In view of [19], hypothesis (HO) holds if and only if the linear system
(4.2) u'(t) = Su(t) + Bu(t), te€]0,b],
(4.3) u(0) = ug

is approximate controllability on #.

It will be shown that the system (1.4) with the conditions (1.2) and (1.3) is
approximately controllable, if for all ¥ > 0, there exists a function u(-) € PC
and u, € X such that

u(t) = C(t)[uo + q(uw)] + S(t)[uo + q(u)]

/St—s[ (u W, [ o, ulenia(r)ir

9 (5.0(Q 6. G 9), / falo (G () ) + B, s

+ > Clt—te)Ie(ultn) + > St —te)Tk(ults)),
0<t <t 0<tp<t
~ I ==bi
u(t,u) = B*S*(b—t)R(vy, Ty)p(u(-)),

where

plu(")) = up — C(b)[uo + g(u)] — S(b)[to + q(u)]
— [[50-5)[7 (s uienlo). [ ko u(ern i)
+9 <5, u(C1(5)), ..., u(p(s)), /0S ka(s, T, u(Cp+1(T)))d7')] ds
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m

—ZC(b—tk I (u ZS — tg) Ik (tr))-

k=1

Remark 4.1. In view of equations (3.2), (3.3) and Step 1 of Theorem 3.1, if
v € PCs, we calculate the following estimate:

/t S(t — s)Bu(s,v)ds
0

< /O t S(t — s)BB*S*(b—t)R(v, Ty) {Ub = C(b)[uo +q(v)] = S(b)[uo + q(v)]
—/Obsw—s>[f(s,¢a<el<s>>,...,¢v (€ [ s
+9 (505G 0018566 [ hator 7, lpna () ) s

0
m

—ZC —ti) I (v(tg)) ZS —tx) Ik )):l (s)ds
k=1

< (ﬁ;ﬁ;b) ol + 53 ol + A7) +éwk<r>}
AR OR g: (0

4 b [bwm TR (4 5,7)“
1 e~ o o . A b
+ (7M§M§b> M, {(Zn + ZLp) +b( LN + f:/‘/)} / sup ||éz(s)]||ds.
0 s€(0,b]

Theorem 4.1. Suppose that the hypotheses (HO)-(H5) are satisfied. Then the
system (4.1) with the conditions (1.2) and (1.3) has at least one mild solution
on ¥ provided

7| M. + (1+ LMz 030)

M, <A(J/VI\***) + kzzjlm(ﬁ)) + M (K(ﬁm) + k; @k(zﬁ***)>
where Mg = ||B||, M. = (;Mgﬂgb) ||ub||+(1+§z\722ﬂ,§,b) {J\/%HUOH +
Vool + Vb (W2 A5 + 2R + (24 +.20)] | and

7= (1 + %J\?gﬁgb) Mo|(Ln+ Lp) + (LN + LN

Proof. By thinking of Theorem 3.1, we define
¢5(t) = C(t)[uo + q(v)] + S(t)[to + ¢(v)]
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+/sws[G%@U>7mmm%%wm%@ﬂmwﬁ
+%<&m«ﬂ®xuq%@ﬂﬁxlkﬂam¢agﬂv»mﬁ}@
+/svwWBS%—w<%nﬂm C6)[uo + a(®)] — SO)fio +33)]
/ S( —s{ (s Go(E1(5)), . B3 (En(s), /0 kl(sm,%(fnﬂ(r)))df)
+g<87¢5(<1(8)),'~'7¢)5(Cp(s))>/0 kQ(SaTa ¢5(Cp+1(7)))d7>:|d8

—ZC — tp) Ik (v ZS —tk Ik )):| (s)ds
k=1
- Z Clt—t)I(o(te) + > S(t—ti)Ti(v(tr))-
O<tp<t 0<trp<t

Consider the map I:PCs = PC([6,b],X) — PCjs defined by
(To)(t) = ¢5(t), t € [5,b].

We might demonstrate that the operator I satisfies every one of the states
of Lemma 2.2. For better understandability, the proof is going to be presented
in a few stages.

Step 1%*. r maps bounded sets into bounded sets in PCjs.
Without a doubt, it is sufficient to show that we can find a positive constant

Ay in ways that for every v € B,(0) := {¢ € PCs; sup |o(t)] < 7“} one has
5<t<b

ITv]lpe < As.
Let v € B,(d), then for ¢t € (0,b], we receive
llés ()l
— 1 o~ . m — [~ mo_
k=1 k=1

1o\ - . B
+ (1 + ;MgM%b) M, [(Xn + Lp) + (LN +$JV)] / sup ||¢w(s)lds,
0 s€(0,b]

where

—

1 — Iy T
W= (LI ) ol + (1+ 2333030 [

+ Mfiol| + Mob [W(LN + LM) + (L + A)] }
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Utilizing the Gronwall’s inequality, we receive

sup ||¢57(t)|| < e(1+%1\/4\221\7%b)1\/4\2[(fn+%)+b($ﬂ+ﬁ/¥7)]b ]/\Z**
$€(0,b] -
M, <A(r) + \I/k(r)>

k=1
‘ik(r)>
k=1

M.. + <1 + 1]\722]\71?)) lﬁl (A(T> + i%(”)
v k=1
+ M, (K(r) + zmj @k(r)>

k=1

1 o~ —
+ <1 + MgMgb)
Y

NE

+ M, (K(r) +

Thus

Tollpe < €7

= A2.

By implementing the techniques applied in Theorem 3.1 (Step 2 & Step
3), we deduce that the operator I' is continuous and compact with simple
modifications.

Step 4*. We now present that we can find an open set U C PCs with v ¢ Al
for A € (0,1) and v € OU. Let A € (0,1) and let v € PC; be a possible solution
of v = AT'(v) for some 0 < A < 1. Therefore, for every t € (0,],

v(t) = Agi(t) = AC()[uo + q(v)] + AS(#)[to + ¢(v)]

2 [ 8-9)# (50566 00(€0(6), [ a7 05l ()i
9 (5,056 05(Go) [ halovrdn(pas () ) |as

+ /\/Ot S(t—s)BB*S*(b— t)R(’y,Tg) {ub — C(b)[up + q(¥)] = S(b)[uo + q(v)]
- [(so-9 17 (505600 5(6n(0). [l 67
. g( 55615 056, [ Kol (s (7)) ) |as
—ZCb—tk I (v is b—ti)Tk(v ))](s)ds

=1

+X Z Ct —ti)Ik(o(ts) + X Y St —te)Tk(v(tr)).

0<trp<t 0<trp<t
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This implies by (H1)-(H5) and for each ¢ € (0,b] we have ||v(¢)|| < ||¢5(t)]]
and

- 1 e~
165(0)] < FFon + (1 N 7M%M%b)

M, (A(H’ﬁum) + Z%Uvnm))

k=1

+ M, (K(Hm%) +) ‘ik(”U”PC)>

k=1

+ (1 + iﬁg@) i [@zn +Pp) b LN+ z;f)}

b
- / sup [ga(s)llds.

s€(0,b]

Utilizing the Gronwall’s inequality, we receive

M, <A<||%|pc>+2 ‘I’k(||7f||7>c)>

k=1

sup [|¢5(t)|| < €7
s€(0,b]

— 1 o~ —
M+ <1+M§M,§b>
¥

+ M, (K(||5|Pc) + Z \I’k(HUHPc)) H )

k=1
and the past inequality keeps. As a result,

— 1~ —~ . _ o
M.+ (1+ 6835730 ) [Ml <A<|v||pc> T Zwkuwa))

k=1
]7

Joline 1
g {H + (1+ L1z 73) {JE (081re) + £ wallvlize)) + T (R(17lme) + 32 Fulire)) H
k=1 k=1

[vllpe < e

+ M, </~\(||57||7>c) + (Iv/k(UHPc))

k=1

and therefore

There exists a constant M,,, > 0 in ways that lv]|pe # M,,,. Fix

U= {v € PC([6,b),X); sup |Ju(t)]| < M} .
5<t<b

As a result of Step 1* and Step 4* in Theorem 4.1, it is enough to demon-
strate that the operator [:U— PCsis a compact map.

With the option of U, there is no v € QU in ways that v € ALw for A € (0,1).
As a result of Lemma 2.2, we infer that I has a fixed point 7, € U. From the
equation (3.4), we infer that u(¢) is a mild solution of the system (4.1) with
the conditions (1.2). The proof is now completed. (]

Theorem 4.2. Assume that the conditions (HO)-(H5) hold and linear system
(4.2)-(4.3) is approzimately controllable on #. The functions F : J x X"+1 —



24 D. BALEANU, M. M. ARJUNAN, M. NAGARAJ, AND S. SUGANYA

X and 9 : J x XP*1 — X are continuous and uniformly bounded and there
exist constants N* > 0, 4** > 0 such that |.F (t,u1, Uz, ..., Upt1)]la < A
and |9 (t,ur, ug, . .., Upy1)|la < A, then the system (4.1) with the conditions
(1.2) and (1.3) is approzimately controllable on 7 .

Proof. Let u?(-) be a fixed point of I'. By Theorem 4.1, any fixed point of I is
a mild solution of (4.1) with the conditions (1.2) and (1.3) under the control

@'(t) = B*S*(b— t)R(y, To)p(u")
and satisfies the inequality
(4.2) u”(b) = up +YR(7, T, 0)p(u”).

Moreover by assumptions on .# and ¢ with Dunford-Pettis theorem, we
have that {f7(s)} and {g7(s)} are weakly compact in .Z*(_#,X), so there is
a subsequence, still denoted by {f7(s)} and {g"(s)}, that converges weakly to
say f(s) and g(s) in Z1(_#,X) respectively.

Define
w = uy — C(b)[ug + q(u)] —S(b)[uo + q(u / S(b—s)] + g(s)]ds
_Zc(b_tk Ii(u ZS — te) T (u(t)).
k=1 k=1

Now, we have

1P(u) — w] = ‘ 509607903 5)- - (5)) — ()l
/Sb—s (8,63 (), - )1 () — g(s)]ds
< sup [ S(t— $)[F(s,u] ()3 (5), .- w1 () — F(s)]ds
t€[0,b]
(4.3) +\ [ =9l a3 o), 6)) — oo }

By using infinite- dimensional version of the Ascoli-Arzela theorem, one can
show that an operator I(-) — [, S( LY 7X) = €(7,X) is
compact. Consequently, we obtaln that || p(u”) wH — 0 asy — 07. Moreover,
from (4.2), we obtain

w7 () = sl < IRy, To)p(u)
< |WR(%, To) (") = w + w))|
< VR, To) (W) | + VR, o) [1F(u™) — w]
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< [WR(v, To)w| + [(u”) — w].

It follows from assumption (HO) and the estimation (4.3) that ||uY (b) —up|| —
0 as v — 0T. This proves the approximate controllability of (4.1) with the
conditions (1.2) and (1.3). O

5. Example

In this section, we shall give an example delineate our outcomes. In order to
apply our abstract results, we need introduce some technical preliminaries. In
the sequel, X = L?([0,7]), 2(&) = {z € X: 2" € X,z(0) = z(7r) = 0} and & :
2(o7) € X — X is the linear operator defined by &z = 2’. It is well-known
that 7 is the infinitesimal generator of a strongly contmuous cosine family
(C(t))ter on X. Furthermore, &7 has a discrete spectrum, the eigenvalues are
2

—n?, for n € N, with corresponding eigenvectors 2, (1) = (W)l/2 sin(nt), and
the properties (a)-(c) mentioned in [12] holds.
Consider the following impulsive partial functional integro-differential equa-

tion of the form:

02 2 . .
Ere) z(t,x) = 92 z(t,x) + a1 (t)z(sint, z) + as(t) sin z(¢, x)
I ,
+1—|—7t2/0 as(s)z(sin s, x)ds
¢
(5.1) + a1 (t)z(sint, ) + a2 (t) sin 2(t, ) + 1—1-%/ as(s)z(sins, z)ds,
0

Axlty,x) = / pu(@,9)=(tn y)dy  and
0

(52) .
A (tg,z) = / pr(z,y)z(te, y)dy, k=1,...,m,
0
2(t,0) = z(t,m) = 0;  2(0,2) = zo(x);
(5:3) 2(0,2) = 2(x), te F=[0,1, 0<z<n
2(0,2) = zo(x) + Zcﬁkz tx, x), and
(5.4)

2(0,7) = z1(x +Z¢>kztk, ),0<z<m,

where we assume the following conditions:

(a) the functions a;(-) and @;(-), i = 1,2, 3, are continuous on [0,1], n; =

sup |a;(s)| <1,i=1,2,3; and n; = sup |a;(s)] <1,i=1,2,3.
0<s<1 0<s<1
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(b) the functions pg, pi : [0,7] x [0,7] = R, &k =1,1,...,m, are continu-
ously differentiable and

2 2
'yk(//< pkxy>dxdy> < oo, and

w—(//( pkxy>2dxdy>2<oo

for every k =1,2,.
(¢) The functions ¢k,¢k 6 ]R k=1,2,....m
To treat this system, we define the operators respectively % : 7 xXxX —
X9: I xXxX=Xk: Ix FxX=>Xk: Fx IxX=X, I, Iy
X=X k=12,...,m;q,q: PC(Z,X) = X by

7 (n.+te /kt (50)ds ) 0

t
= a1 (t)z(sint, z) + az(t) sin z(¢, x) + ﬁlﬁ/ as(s)z(sin s, x)ds,
0

G\t (¢ kg(t s z(((s)))ds) (x)

1

a1 (t)z(sint, x) + az(t) sin z(t, z) + e

¢
/ as(s)z(sin s, z)ds,
0

/ (85, €((6)) (2)ds =
/ (t,s,¢(2(8)))(x)ds = ﬁ/o as(s)z(sins, x)ds,

I (2)(z) = /Oﬂpk(z,y)z(tk,y)dy, k=1,....m

t
/ az(s)z(sin s, z)ds,
0

Te(2)(@) = /Owﬁk(a:,y)z(tk,y)dy, k=1....m

2) = ¢t @)
k=1
and

x) = Z gkz(tk, x)
k=1

Then equations (5.1)-(5.4) takes the abstract form (1.1)-(1.3). It is simple
to view that with the selections of the above functions, conditions (H1)-(H6)
of Theorem 3.1 are fulfilled. Hence by Theorem 3.1, we consider that nonlocal
impulsive Cauchy problem (5.1)-(5.4) has a mild solution on _#.
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