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m-ADIC RESIDUE CODES OVER Fq[v]/(v2 − v) AND

DNA CODES

Ferhat Kuruz, Elif Segah Oztas, and Irfan Siap

Abstract. In this study we determine the structure of m-adic residue

codes over the non-chain ring Fq [v]/(v2 − v) and present some promising
examples of such codes that have optimal parameters with respect to

Griesmer Bound. Further, we show that the generators of m-adic residue

codes serve as a natural and suitable application for generating reversible
DNA codes via a special automorphism and sets over F42k [v]/(v

2 − v).

1. Introduction

Quadratic residue codes constitute an important class of cyclic codes. Due
to this fact, many researchers have worked on further generalizations of these
families of codes [4,5,9,15]. Especially, m-adic residue codes are a generalization
of these codes [6]. In this direction, Pless and Brualdi have defined polyadic
codes [4], and later Pless has studied polyadic codes via idempotent generators
and some specific ideals [4]. After these works, Job has introduced m-adic
residue codes in terms of generator polynomials over fields [6].

Another research direction that has been initiated by Leonard Adleman that
serves as a solution to the famous Travelermans Problem (an NP-complete
problem) is presented by employing DNA molecules in [2].

DNA sequences consist of four bases (nucleotides) which are (A) Adenine,
(G) Guanine, (T) Thymine and (C) Cytosine. DNA strands obey the famous
Watson Crick complement (WCC) rule, i.e., “A” pairs with “T” and “G” pairs
with “C”. Symbolically, we represent the WCC pairings as Ac = T, T c =
A,Gc = C and Cc = G where the superscript c stands for the complement.

The error correction and detection quality observed naturally in DNA strands
mainly is based on WCC property. This property has attracted the attention
on studying algebraic codes that enjoys such similar properties. Hence, stud-
ies on these directions have been one of the main focuses in algebraic coding
theory. Such algebraic codes are referred to as DNA codes. To mention some
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2 F. KURUZ, E. S. OZTAS, AND I. SIAP

of these studies but surely not all, DNA codes are studied over F4 [1], F16 [10],
F42k [11], the chain rings F2[u]/(u2 − 1) [13], F2[u]/(u4 − 1) [14] and very re-
cently over non-chain rings F4[v]/(v2− v) [3]. Due to the complex and still not
well understood structure of DNA, researchers have restricted their studies to
specific (local) regions of DNA strands such as protein, binding sites that have
important role in the protein production processes. In [7], reversible comple-
ment 8-bases (8-mers) are observed intensively in some specific and important
regions of DNA. This sequences are believed to play important roles on DNA
structures.

In this work, we extend the definition of m-adic residue codes over a non-
chain ring (Fq[v]/(v2− v)) in terms of idempotent generators. We study codes
over the ring Fq[v]/(v2− v) that is also a non-chain ring unlike in the previous
studies in the literature which are over finite fields. We obtain some opti-
mal codes with respect to Griesmer bound introduced in [12]. After exploring
structures of these codes, we introduce a special automorphism and a generator
set to construct reversible DNA codes by means of the generators of m-adic
residue codes over F42k [v]/(v2 − v). This generator methods for constructing
DNA codes has proven to be less complex than [3]. This result is based on the
fact that the structure of the generators of m-adic residue codes over non-chain
rings (Fq[v]/(v2 − v)) is more suitable for reversible DNA codes.

The rest of the paper is organized as follows: In Section 2, we give some pre-
liminaries and definitions about linear codes, cyclic codes, m-adic residue codes
and reversible codes. Section 3 is devoted to definition of m-adic residue codes
over the ring Fq[v]/(v2 − v) and special classes of cyclic codes. In addition, we
give some properties of the generator polynomials and idempotent generators
of m-adic residue codes over the ring Fq[v]/(v2− v) and present two promising
examples of these codes in this section. We present a new DNA code construc-
tion by palindromic generator polynomials of m-adic residue codes over the
ring F42k [v]/(v2 − v) and present some examples. In Section 5, we finalize this
study by summarizing our findings.

2. Preliminaries

In this section we present some necessary definitions in a concise way [6, 8].
Let q be a prime and Fq be a field with q elements. A subset C of Fnq is called
a code and a subspace of Fnq is called a linear code. The Hamming weight
wH(x) of a codeword x = (x0, x1, . . . , xn−1) ∈ C is the number of non-zero
coordinates of x. Hamming distance between x = (x0, x1, . . . , xn−1) ∈ C and
y = (y0, y1, . . . , yn−1) ∈ C is dH(x, y) = wH(x − y) and minimum distance of
C is dH(C) = min{wH(x − y) : x, y ∈ C, x 6= y}. A linear code of length n,
dimension k and minimum distance d over the finite field Fq is referred to as an
[n, k, d]q code. If (an−1, a0, . . . , an−2) ∈ C for all (a0, a1, . . . , an−1) ∈ C, then
C is called a cyclic code.
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Let C1 and C2 be two cyclic codes which are generated by the polyno-
mials g1(x) and g2(x), respectively. Also, e1(x) and e2(x), be the idempo-
tent generators of these codes respectively. Then, a generator polynomial
of C1 + C2 is gcd(g1(x), g2(x)) and an idempotent generator of C1 + C2 is
e1(x) + e2(x) − e1(x)e2(x). Moreover, a generator polynomial of C1 ∩ C2 is
lcm(g1(x), g2(x)) and an idempotent generator of C1 ∩ C2 is e1(x)e2(x). If
C1 ⊆ C2, then the complementary code of C1 relative to C2 is denoted by C1

having property that C1 + C1 = C2, and C1 ∩ C1 = 0. The complementary
code of C1 relatively to V = Fnq (the whole space) is called the complement

of C1. If
∑n−1
i=0 vi = 0 for v = (v0, v1, . . . , vn−1) ∈ V , then v is called even-

like,otherwise it is odd-like. If all codewords of a code are even-like, then this
code is an even-like code otherwise it is an odd-like code. Let E be the set
of all even-like vectors and h(x) be a polynomial in which all coefficients are
1 that corresponds to the vector notation (1, 1, . . . , 1). If (q, n) = 1, then the
dimension of E is n−1 and this code is a cyclic code with idempotent generator
1− (1/n)h(x).

Definition ([6]). Let p be a prime and b be a primitive element of Z∗p = Zp\{0}.
The set of nonzero m-adic residues modulo p is defined as Q0 = {am : a ∈ Z∗p}
where m ≥ 2, m ∈ Z and m|(p − 1). Also, we let Qi = biQ0 and µa : i →
ai (mod p) where a ∈ Q1 be a coordinate permutation such that µa cyclically
permutes the sets Q0, Q1, . . . , Qm−1.

Example 2.1. Let p = 19 and 2 be a primitive element of Z∗19. Since 6|19− 1,
we can take m = 6. Then, Q0 = {1, 7, 11}, Q1 = {2, 3, 14}, Q2 = {4, 6, 9},
Q3 = {8, 12, 18}, Q4 = {5, 16, 17}, Q5 = {10, 13, 15}.

Definition ([6]). Let p be a prime and q be a prime power such that gcd(p, q) =
1. Let b be a primitive element of Z∗p and α be a primitive pth root of unity
in some field extension of Fq. Let Q0 be the set of nonzero m-adic residues
modulo p and Qi = biQ0. If q is an m-adic residue modulo p, i.e., q ∈ Q0, then
the codes generated by the polynomials gi(x) = xp−1∏

k∈Qi

(x−αk)
(i = 0, 1, . . . ,m−1)

are called an even-like family of m-adic residue codes of class I with length p
over Fq.

The following families of m-adic residue codes defined below are derivations
of even-like family of m-adic residue codes of class I.

Definition ([6]). • A family of codes generated by polynomials ĝi(x) =∏
k∈Qi

(x− αk) (i = 0, 1, . . . ,m − 1) is called a family of odd-like class

I m-adic residue codes of length p over Fq and the code generated by
ĝi(x) is the complement of the code generated by gi(x).

• A family of codes generated by polynomials hi(x) = (x − 1)ĝi(x)
(i = 0, 1, . . . ,m − 1) is called a family of even-like class II m-adic
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residue codes of length p over Fq and the code generated by hi(x) is
the complementary code of the code generated by gi(x) relative to E.

• A family of codes generated by polynomials ĥi(x) = gi(x)
x−1 (i = 0, 1, . . .,

m − 1) is called a family of odd-like class II m-adic residue codes of
length p over Fq and these codes are the complements of the codes
generated by hi(x).

Example 2.2. Even-like class I 4-adic residue codes of length 17 over F4 =
{0, 1, w, 1 + w |w2 = w + 1} are

C0 = 〈g0(x)〉
= 〈1+x+w2x2+x4+w2x5+wx6+wx7+w2x8+x9+w2x11+x12+x13〉,

C1 = 〈g1(x)〉
= 〈1+wx+wx2+w2x3+x4+wx6+wx7+x9+w2x10+wx11+wx12+x13〉,

C2 = 〈g2(x)〉
= 〈1+x+wx2+x4+wx5+w2x6+w2x7+wx8+x9+wx11+x12+x13〉,

and

C3 =〈g3(x)〉
=〈1+w2x+w2x2+wx3+x4+w2x6+w2x7+x9+wx10+w2x11+w2x12+x13〉

and the minimum distance of these codes is 12.

Theorem 2.3 ([6]). Let C be an arbitrary m-adic residue code with generat-
ing idempotent e. Then, e is a linear combination of the polynomials l0(x),
l1(x),. . . ,lm−1(x) and 1 over Fq where li(x) =

∑
k∈Qi

xk.

In the following we give a preliminary definition for necessary notions to be
introduced later.

Definition. Let C be a code of length n over an finite alphabet. If cr =
(cn−1, cn−2, . . . , c1, c0) ∈ C for all c = (c0, c1, . . . , cn−1) ∈ C, then C is called a
reversible code.

3. m-adic residue codes over Fq[v]/(v2 − v)

Pless introduced the idempotent generators of m-adic residue codes inspired
by quadratic residue codes and she has studied properties of these generators [4]
. Here, we extend these ideas of idempotent generators to m-adic residue codes
over the non-chain ring Fq[v]/(v2 − v) and identify the idempotent generators
for all classes of m-adic residue codes over this ring.

Proposition 3.1. Let p be a prime and q be a prime power. Let q be m-adic
residues modulo p, i.e., q ∈ Q0 for a positive integer m such that m|(p− 1). If
ei and ej are idempotents in Fq[x]/(xp−1), then vei+(1−v)ej is an idempotent
in (Fq[v]/(v2 − v))[x]/(xp − 1).
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Proof. By the definition of being an idempotent, we have (vei + (1− v)ej)
2 =

ve2i + (1− v)e2j = vei + (1− v)ej . �

Proposition 3.2. Let ei and ej be idempotent generators of an even-like class
I m-adic residue codes of length p over Fq such that 0 ≤ i, j ≤ m − 1 where i
and j are integers. Let Ek = vei + (1− v)ej ∈ (Fq[v]/(v2− v))[x]/(xp− 1) and
h = 1 + x+ x2 + · · ·+ xp−1. Then,

i. µa(Ek) is idempotent.
ii. If i 6= j, then EiEj = 0.

iii. E0 + E1 + · · ·+ Em−1 = 1− h.

Proof. i. If Ek = vei+(1−v)ej , then µa(vei+(1−v)ej) = vµa(ei)+(1−v)µa(ej).
Since µa(ei) and µa(ej) are idempotents,

(µa(Ek))2 = (vµa(ei) + (1− v)µ(ej))
2

= v2(µa(ei))
2 + (1− v)2(µa(ej))

2

= vµa(ei) + (1− v)µa(ej) = µa(Ek).

ii. Let Ei = vea + (1− v)eb, Ej = vec + (1− v)ed where a, b, c, d ∈ Z+ ∪ {0}
are distinct nonnegative integers.

EiEj = (vea + (1− v)eb)(vec + (1− v)ed)

= v2eaec + (1− v)2ebed

= v20 + (1− v)20 = 0.

iii. Let E0 = ve0 + (1 − v)e′0, E1 = ve1 + (1 − v)e′1,. . . , Em−1 = vem−1 +
(1− v)e′m−1.

E0 + E1 + · · ·+ Em−1

= v(e0 + e1 + · · ·+ em−1) + (1− v)(e′0 + e′1 + · · ·+ e′m−1)

= v(1− h) + (1− v)(1− h) = 1− h. �

Since the idempotent elements Ek = vei + (1 − v)ej satisfy the properties
above, we naturally consider them as idempotent generators of m-adic residue
codes over Fq[v]/(v2 − v).

Definition. A family of codes generated by idempotent elements Ek = vei +
(1 − v)ej is called a family of even-like class I m-adic residue codes of length
p over Fq[v]/(v2 − v) where ei and ej are idempotent generators of class I
even-like m-adic residue codes over Fq.

Proposition 3.3. Let Ei be an idempotent generator of a class I even-like
m-adic residue codes of length p over Fq[v]/(v2 − v). Assume E′i = 1 − Ei
such that 0 ≤ i, j ≤ m − 1 where i and j are integers. Then E′i satisfies the
followings:

i. µa(E′i) = E′j (i 6= j).
ii. If i 6= j, then E′i + E′j − E′iE′j = 1.
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6 F. KURUZ, E. S. OZTAS, AND I. SIAP

iii. E′0E
′
1 · · ·E′m−1 = h.

Proof. i. µa(E′i) = µa(1− Ei) = 1− µa(Ei) = 1− Ej = E′j .
ii.

E′i + E′j − E′iE′j = 1− Ei + 1− Ej − (1− Ei)(1− Ej)
= 2− Ei − Ej − (1− Ei − Ej + EiEj)

= 1 + EiEj = 1 + 0 = 1.

iii.

E′0E
′
1 · · ·E′m−1 = (1− E0)(1− E1) · · · (1− Em−1)

= 1− (E0 + E1 + · · ·+ Em−1)

+ (E0E1 + E0E2 + · · ·+ Em−2Em−1)

− (E0E1E2 + E0E1E3 + · · ·+ Em−3Em−2Em−1)

+ · · ·+ (−1)mE0E1 · · ·Em−1
= 1− (E0 + E1 + · · ·+ Em−1) + 0

= 1− (1− h) = 1− 1 + h = h. �

Definition. A family of codes generated by the idempotent element E′i = 1−Ei
(0 ≤ i ≤ m − 1 ) is called a family of odd-like class I m-adic residue codes of
length p over Fq[v]/(v2 − v).

Proposition 3.4. Let Ei be an idempotent generator of a class I even-like
m-adic residue codes of length p over Fq[v]/(v2 − v). Assume Fi = 1− h− Ei
such that 0 ≤ i, j ≤ m − 1 where i and j are integers. Then, Fi satisfies the
followings:

i. µa(Fi) = Fj (i 6= j).
ii. Fi + Fj − FiFj = 1− h, where i 6= j.

iii. F0F1 · · ·Fm−1 = 0.

Proof. i. µa(Fi) = µa(1− h− Ei) = 1− µa(h)− µa(Ei) = 1− h− Ej = Fj .
ii.

Fi + Fj − FiFj
= (1− h− Ei) + (1− h− Ej)− (1− h− Ei)(1− h− Ej)
= 2− 2h− Ei − Ej − (1− h− Ej − h+ h2 − hEj − Ei + hEi + EiEj)

= 1− h.

iii. Let a = 1− h.

F0F1 · · ·Fm−1 = (1− h− E0)(1− h− E1) · · · (1− h− Em−1)

= (a− E0)(a− E1) · · · (a− Em−1)

= am − am−1(E0 + E1 + · · ·+ Em−1)
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+ am−2
∑
i6=j

EiEj + · · ·+ (−1)mE0E1 · · ·Em−1

= am − am−1(1− h) + 0 = am − am = 0. �

Definition. A family of codes generated by the idempotent elements Fi =
1−h−Ei is called a family of even-like class II m-adic residue codes of length
p over Fq[v]/(v2 − v) such that 0 ≤ i ≤ m− 1 where i is an integer.

Proposition 3.5. Let Ei and Fi be class I even-like m-adic residue code of
length p and class II even-like m-adic residue code, respectively. Let F ′i =
1 − Fi = h + Ei such that 0 ≤ i, j ≤ m − 1 where i and j are integers. Then
F ′i satisfies the following:

i. µa(F ′i ) = F ′j (i 6= j).
ii. If i 6= j, then F ′iF

′
j = h.

iii. F ′0 + F ′1 + · · ·+ F ′m−1 = 1− (m− 1)h.

Proof. i. µa(F ′i ) = µa(1− Fi) = 1− µa(Fi) = 1− Fj = F ′j .

ii. F ′iF
′
j = (h+ Ei)(h+ Ej) = h2 + h(EiEj) + EiEj = h.

iii.

F ′0 + F ′1 + · · ·+ F ′m−1 = (h+ E0) + (h+ E1) + · · ·+ (h+ Em−1)

= mh+ E0 + · · ·+ Em−1

= 1− (m− 1)h. �

Definition. A family of codes generated by idempotent element F ′i = 1−Fi =
h + Ei is called a family of odd-like class II m-adic residue codes of length p
over Fq[v]/(v2 − v) such that 0 ≤ i ≤ m− 1 where i is an integer.

Example 3.6. Idempotent generators of even-like class I 4-adic residue codes
of length 17 over F4 are e0 = l0 + wl1 + l2 + w2l3, e1 = wl0 + l1 + w2l2 + l3,
e2 = l0+w2l1+l2+wl3 and e3 = w2l0+l1+wl2+l3 where l0 = x+x4+x13+x16,
l1 = x3 + x5 + x12 + x14, l2 = x2 + x8 + x9 + x15, l3 = x6 + x7 + x10 + x11. If
E0 = ve0+(1−v)e2 is considered, then idempotent generators of even-like class
I 4-adic residue codes of length 17 over F4[v]/(v2−v) are E0 = ve0 +(1−v)e2,
E1 = µ3(E0) = ve3 + (1− v)e1, E2 = µ3(E1) = ve2 + (1− v)e0, E3 = µ3(E2) =
ve1 + (1− v)e3(also E0 = µ3(E3)).

Let gi(x) be the generator polynomial of corresponding to idempotent gen-
erator Ei, then

g0(x) = 1 + x+ (v + w)x2 + x4 + (v + w)x5 + (v + w2)x6 + (v + w2)x7

+ (v + w)x8 + x9 + (v + w)x11 + x12 + x13,

g1(x) = 1 + (v + w)x+ (v + w)x2 + (v + w2)x3 + x4 + (v + w)x6 + (v + w)x7

+ x9 + (v + w2)x10 + (v + w)x11 + (v + w)x12 + x13,

g2(x) = 1 + x+ (v + w2)x2 + x4 + (v + w2)x5 + (v + w)x6 + (v + w)x7

Ah
ea
d 
of
 P
rin
t



8 F. KURUZ, E. S. OZTAS, AND I. SIAP

+ (v + w2)x8 + x9 + (v + w2)x11 + x12 + x13,

g3(x) = 1 + (v + w2)x+ (v + w2)x2 + (v + w)x3 + x4 + (v + w2)x6

+ (v + w2)x7 + x9 + (v + w)x10 + (v + w2)x11 + (v + w2)x12 + x13.

All these polynomials generate the same parameter [17, 4, 12] codes and these
parameters attain the Griesmer bound given in [12]. Thus these codes are
optimal.

Let ĝi(x) be the generator polynomial of a code generated by the idempotent
E′i. Then,

ĝ0(x) = 1 + x+ (v + w2)x2 + x3 + x4,

ĝ1(x) = 1 + (v + w)x+ x2 + (v + w)x3 + x4,

ĝ2(x) = 1 + x+ (v + w)x2 + x3 + x4,

ĝ3(x) = 1 + (v + w2)x+ x2 + (v + w2)x3 + x4.

Let hi(x) be the generator polynomial of a code generated by the idempotent
Fi. Then,

h0(x) = 1 + (v + w)x2 + (v + w)x3 + x5,

h1(x) = 1 + (v + w2)x+ (v + w2)x2 + (v + w2)x3 + (v + w2)x4 + x5,

h2(x) = 1 + (v + w2)x2 + (v + w2)x3 + x5,

h3(x) = 1 + (v + w)x+ (v + w)x2 + (v + w)x3 + (v + w)x4 + x5.

Let ĥi(x) be the generator polynomial of a code generated by the idempotent
F ′i . Then,

ĥ0(x) = 1 + (v + w)x2 + (v + w)x3 + (v + w2)x4 + x5 + (v + w)x6 + x7

+ (v + w2)x8 + (v + w)x9 + (v + w)x10 + x12,

ĥ1(x) = 1 + (v + w2)x+ x2 + (v + w)x3 + (v + w2)x4 + (v + w2)x5 + x6

+ (v + w2)x7 + (v + w2)x8 + (v + w)x9 + x10 + (v + w2)x11 + x12,

ĥ2(x) = 1 + (v + w2)x2 + (v + w2)x3 + (v + w)x4 + x5 + (v + w2)x6 + x7

+ (v + w)x8 + (v + w2)x9 + (v + w2)x10 + x12,

ĥ3(x) = 1 + (v + w)x+ x2 + (v + w2)x3 + (v + w)x4 + (v + w)x5 + x6

+ (v + w)x7 + (v + w)x8 + (v + w2)x9 + x10 + (v + w)x11 + x12.

A polynomial is called palindromic whenever the order of its coefficients is
reversed then it is still equal to itself. Later we are going to use the palindromic
property of the generators of these families of codes. For instance, g(x) =
w + x + (1 + w)x2 + x3 + wx4 is a palindromic polynomial. Here, we give a
property of m-adic residue codes that is going to be related to palindromic
property in the sequel.
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Lemma 3.7. i. If (p− 1)/m is even and i ∈ Qj, then −i ∈ Qj.
ii.

∑
i∈Qj

i = 0.

Proof. i. If (p − 1)/m is even, then (p − 1)/(2m) is an integer. Assume that
Z∗p = 〈b〉. Then, b(p−1)/(2m) ∈ Z∗p ⇒ (b(p−1)/(2m))m = b(p−1)/2 = −1 ∈ Q0

(since b is a generator). Further, since Qi’s are multiplicative groups, for all
i ∈ Q0, we have −i ∈ Q0. Hence, for all i ∈ Qj , we have −i ∈ Qj .

ii. Let Z∗p = 〈b〉 and p − 1 = mt. Then, 〈bm〉 = {1, bm, b2m, . . . , b(t−1)m} =

Q0. (1 + bm + b2m + · · · + b(t−1)m)(bm − 1) = btm − 1 = 0. Since bm − 1 6= 0,
1 + bm + b2m + · · ·+ b(t−1)m = 0.

Thus,
∑
i∈Qj

i = bj
∑
i∈Q0

i = 0. �

Proposition 3.8. If q = 2k where k ≥ 1 ∈ Z and (p − 1)/m is even, then
the generator polynomials of the m-adic residue codes over Fq of length p are
palindromic.

Proof. Let f(x) be a generator polynomial of an m-adic residue code cor-
responding to Q0. Then, f(x) =

∏
i∈Q0

(x− αi). We know that if f ′(x) =

xdeg(f)f(x−1) is equal to f(x), then f(x) is palindromic. To show this:

f ′(x) = xdeg(f)f(x−1)

= xdeg(f)
∏
i∈Q0

(x−1 − αi) = xdeg(f)
∏
i∈Q0

(x−1 − α−i) (by Lemma 7(i))

= xdeg(f)
∏
i∈Q0

(
αi − x
xαi

) =
xdeg(f)

xdeg(f)

∏
i∈Q0

(
αi − x
αi

)

=
1

α
∑

i∈Q0
i

∏
i∈Q0

(αi − x) =
1

α0

∏
i∈Q0

(x− αi) (by Lemma 7(ii))

= f(x). �

Proposition 3.9. Let p be a prime and q be a power of 2. Assume that m ∈ Z+

such that m|(p−1) and a, q ∈ Q0. If ei and ej are idempotent generators of m-
adic residue codes of length p over Fq, then v(

∑
S⊆I,i∈S

ei)+(1−v)(
∑

P⊆I,j∈P
ej)’s

are idempotents in the ring (Fq[v]/(v2 − v))[x]/(xp − 1).

Proof. Since q is a power of 2, the characteristic of (Fq[v]/(v2− v))[x]/(xp− 1)
is 2. Let I be an index set and S, P ⊆ I, then

v(
∑
i∈S

ei) + (1− v)(
∑
j∈P

ej)
2 = (v(

∑
i∈S

ei))
2 + ((1− v)(

∑
j∈P

ej))
2

= v(
∑
i∈S

ei)
2 + (1− v)(

∑
j∈P

ej)
2
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= v(
∑
i∈S

ei) + (1− v)(
∑
j∈P

ej).

�

Example 3.10. If we choose E0 = v(e0+e1)+(1−v)(e1+e2) as in the previous
example, then E1 = v(e3+e0)+(1−v)(e0+e1), E2 = v(e2+e3)+(1−v)(e3+e0)
and E3 = v(e1 + e2) + (1− v)(e2 + e3).

Let gi(x) be the generator polynomials of a code generated by the idempotent
Ei. Then

g0(x) = 1 + w2x+ (v + w)x2 + (vw + w)x3 + vwx4 + vwx5 + (vw + w)x6

+ (v + w)x7 + w2x8 + x9,

g1(x) = 1 + (v + w2)x+ w2x2 + vw2x3 + (vw + w)x4 + (vw + w)x5 + vw2x6

+ w2x7 + (v + w2)x8 + x9,

g2(x) = 1 + wx+ (v + w2)x2 + (vw2 + w2)x3 + vw2x4 + vw2x5

+ (vw2 + w2)x6 + (v + w2)x7 + wx8 + x9, and

g3(x) = 1 + (v + w)x+ wx2 + vwx3 + (vw2 + w2)x4 + (vw2 + w2)x5

+ vwx6 + wx7 + (v + w)x8 + x9.

All these polynomials generate the same parameter [17, 8, 8] codes and these
parameters attain the Griesmer bound given in [12]. So these codes are all
optimal.

Theorem 3.11. Generator polynomials of m-adic residue codes over the ring
F2k [v]/(v2−v) of length p are palindromic if (p−1)/m is even where k ≥ 1 ∈ Z.

Proof. Let I be an index set, S, P ⊆ I and v(
∑
i∈S

ei) + (1 − v)(
∑
j∈P

ej) be an

idempotent generator of an m-adic residue codes over the ring F2k [v]/(v2 − v)
of length p, (p − 1)/m be even and k ≥ 1 ∈ Z. Let fi and fj be generator
polynomials of m-adic residue codes over F2k corresponding to

∑
i∈S

ei and
∑
j∈P

ej

respectively. From now on, we will denote
∑
i∈S

ei and
∑
j∈P

ej by
∑
ei and

∑
ej

respectively. Then gcd(
∑
ei, x

n − 1) = fi and gcd(
∑
ej , x

n − 1) = fj . There
exists a, b, c, d ∈ F2k [x] such that a

∑
ei+b(x

n−1) = fi and c
∑
ei+d(xn−1) =

fj .
Let f be the generator polynomial corresponding to codes generated by the

idempotents v(
∑
i∈S

ei)+(1−v)(
∑
j∈P

ej). Then gcd(v(
∑
i∈S

ei)+(1−v)(
∑
j∈P

ej), x
n−

1) = f .
We claim that f = vfi + (1− v)fj .

(va+ (1− v)c)(v
∑

ei + (1− v)
∑

ej) + (vb+ (1− v)d)(xn − 1)

= (va
∑

ei + (1− v)c
∑

ej) + (vb+ (1− v)d(xn − 1))
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= v(a
∑

ei + b(xn − 1)) + (1− v)(c
∑

ej + d(xn − 1))

= vfi + (1− v)fj .

Since s f = gcd(v(
∑
i∈S

ei) + (1 − v)(
∑
j∈P

ej), x
n − 1) and vfi + (1 − v)fj is a

linear combination v(
∑
i∈S

ei)+(1−v)(
∑
j∈P

ej) and xn−1, f divides vfi+(1−v)fj .

On the other hand, since fi|
∑
ei and fj |

∑
ej , then there exists t, s ∈ F2k [x]

such that tfi =
∑
ei and sfj =

∑
ej . Thus,

(tv + s(1− v))(vfi + (1− v)fj) = vtfi + (1− v)sfj

= v
∑

ei + (1− v)
∑

ej .

Hence,

(1) (vfi + (1− v)fk)|(v
∑

ei + (1− v)
∑

ej).

In addition, since fi|(xn− 1) and fi|
∑
ei, then there exists k,m ∈ F2k [x] such

that kfi = xn − 1 and mfj = xn − 1. Thus,

(kv +m(1− v))(vfi + (1− v)fj) = xn − 1.

Then

(2) (vfi + (1− v)fk)|(xn − 1).

(vfi+(1−v)fk)|f , i.e., gcd(v(
∑
i∈S

ei)+(1−v)(
∑
j∈P

ej), x
n−1) = (vfi+(1−v)fk)

is obtained by (1) and (2).
Since fi and fj are palindromic, vfi + (1− v)fk is also palindromic. �

4. Reversible DNA codes over F42k [v]/(v2 − v)

In this section, we utilize the results obtained above for a special family
of chain rings where q = 42k. We present a general theorem for reversible
DNA codes over R2k = F42k [v]/(v2 − v) with palindromic factors and apply
these for generators of m-adic residue codes. A general form of a ψ-set with
an automorphism has been introduced recently by the authors for solving the
reversibility problem for DNA codes over R2k. ψ-set has been introduced in [3]
over F4[v]/(v2 − v).

In order to explain the reversibility problem, we give a concrete example
first. Let (a1, a2, a3) be a codeword where ai’s are elements of R4 correspond-
ing to a DNA string ATGGCTGATGAG (a 12-string) where the matching is
given by a1 →ATGG, a2 →CTGA, α3 →TGAG. The reverse of (a1, a2, a3)
is clearly equal to (a3, a2, a1). (a3, a2, a1) corresponds to TGAGCTGAATGG.
However,TGAGCTGAATGG is not the reverse of ATGGCTGATGAG. In-
deed, the reverse of ATGGCTGATGAG is GAGTAGTCGGTA. Whenever we
have a ring element matched with non-single letters this problem occurs. Hence,
for a code being reversible over ring elements does not necessarily mean that is
going to produce reversibility over DNA letters which is crucial for a DNA code.
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Table 1. The θ mapping between DNA pairs and F16 ([10]).

F16(multiplicative) F16(additive) Double DNA pair

0 0 AA
α0 1 TT
α1 α AT
α2 α2 GC
α3 α3 AG
α4 1 + α TA
α5 α+ α2 CC
α6 α2 + α3 AC
α7 1 + α+ α3 GT
α8 1 + α2 CG
α9 α+ α3 CA
α10 1 + α+ α2 GG
α11 α+ α2 + α3 CT
α12 1 + α+ α2 + α3 GA
α13 1 + α2 + α3 TG
α14 1 + α3 TC

This section is focused on defining codes over R2k that enjoy this reversibility
property whenever they are mapped to DNA strings. Let C be a subset of
{A,C, T,G}n. If both elements and their reverses are in C, then C is called a
reversible DNA code. In order to obtain a reversible DNA code from codes over
rings, the main tools are to be able to discover specific generators and a Gray
map that transforms codes over rings to DNA strings with reversible property.
I the sequel, we study these two problems over R2k.
R2k is a commutative non-chain ring with v2 = v. By Chinese Remainder

Theorem we can then decompose R2k as follows: R2k = vF42k ⊕ (1 − v)F42k .
We define a Gray map;

φ : R2k → F 2
42k

a+ vb→ (a+ b, a).
(3)

θ is used to transform elements of F42k to DNA strings of lengths 2k as in
Tables given in [10,11]. Especially, the DNA table for F16 originally introduced
in 1 is also presented here table 4. θ1 is used to convert the elements of the
R2k to DNA strings of lengths 4k. Let a + vb be an element in R2k. θ1(a +
vb) = (θ(a + b), θ(a)). Θ is used to convert a codeword to a DNA string. Let
c = (c0, c1, . . . , cn−1) and Θ(c) = (θ1(c0), θ1(c1), . . . , θ1(cn−1)).

Example 4.1. Let β = α3 + α6v ∈ R2 and φ(β) = (α2, α3). Then, θ1(β) =
(θ(α2), θ(α3)) = GCAG.
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Example 4.2. Let c = (α3 + α6v, α3 + α9v) be a codeword of a code. Then,
φ(α3+α6v) = (α2, α3) and φ(α3+α9v) = (α, α3). Θ(c) = (θ1(α3+α6v), θ1(α3+
α9v)) = (θ(α2), θ(α3), θ(α), θ(α3)) = GCAGATAG.

We introduce a new automorphism over R2k such that it helps to obtain the
DNA reverse of an element in R2k;

ψ : R2k → R2k

a+ vb→ a4
k

+ (1 + v)b4
k

= (a+ b)4
k

+ vb4
k

.
(4)

Example 4.3. Let β = α3 +α6v ∈ R2 and θ1(β) = GCAG then ψ(β) = α12 +
α9(v−1) = α8 +vα9 and θ1(ψ(β)) = θ1(α8 +vα9) = (θ(α12), θ(α8)) = GACG.

Definition. Let g(x) be a polynomial of degree deg g(x) = t over R. Let C be
a linear code over R, generated by a set Λg called the ψ set defined by

Λg = {Λ0,Λ1, . . . ,Λt−1}
where

Λi =

{
xig(x), if i is even,

xiψ(g(x)), if i is odd.

Theorem 4.4. Let f(x) be a palindromic factor of xn−1 over F42k [v]/(v2−v)
where n − deg(f(x)) is even. If ψ-set generates a linear code C then Θ(C) is
a reversible DNA codes.

Proof. Proof is similar in [3] and Theorem 4.5. �

The following theorem can be presented as a consequence of properties of
the idempotent generators of m-adic residue codes.

Theorem 4.5. Let g(x) be a generator polynomial of an m-adic residue code
over F42k [v]/(v2 − v) where deg(g(x)) is odd. If a ψ-set generates the linear
code C, then Θ(C) is a reversible DNA code.

Proof. Let g(x) be a generator polynomial of an m-adic residue code then it is
a palindromic polynomial by Theorem 3.11. Let Λg be a ψ set of g(x). Reverses
of DNA codewords ψ(c), for all c ∈ C, are obtained by the following equation:

(5) Θ

(
k−1∑
i=0

βiΛi

)r
= Θ

(
k−1∑
i=0

ψ(βi)Λk−1−i

)
,

where k = n−deg(g(x)) and βi ∈ R2k. Note that, the polynomial is considered
as a codeword. Since

∑
i ψ(βi)Λk−1−i ∈ C, then Θ(C) is a reversible DNA

code. �

Example 4.6. g(x) = x13 + x12 + (v+ (α2 +α))x11 + x9 + (v+ (α2 +α))x8 +
(v+ (α2 +α+ 1))x7 + (v+ (α2 +α+ 1))x6 + (v+ (α2 +α))x5 +x4 + (v+ (α2 +
α))x2 + x+ 1 is a generator polynomial of an m-adic residue code length of 17
over F16[v]/(v2 − v). The ψ set of g(x) is as follows:
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{Λ0,Λ1,Λ2,Λ3} = {{1, 1, v+α2 +α, 0, 1, v+α2 +α, v+α2 +α+1, v+α2 +α+
1, v+α2 +α, 1, 0, v+α2 +α, 1, 1, 0, 0, 0}, {0, 1, 1, v+α2 +α+1, 0, 1, v+α2 +α+
1, v+α2+α, v+α2+α, v+α2+α+1, 1, 0, v+α2+α+1, 1, 1, 0, 0}, {0, 0, 1, 1, v+
α2 +α, 0, 1, v+α2 +α, v+α2 +α+ 1, v+α2 +α+ 1, v+α2 +α, 1, 0, v+α2 +
α, 1, 1, 0}, {0, 0, 0, 1, 1, v + α2 + α+ 1, 0, 1, v + α2 + α+ 1, v + α2 + α, v + α2 +
α, v + α2 + α+ 1, 1, 0, v + α2 + α+ 1, 1, 1}}.

The parameters of C are [17, 4, 12]. Let us choose a codeword and investigate
its corresponding DNA form.

Let c1 = αΛ0 = {α, α, αv+α3 +α2, 0, α, αv+α3 +α2, αv+α3 +α2 +α, αv+
α3 + α2 + α, αv + α3 + α2, α, 0, α+ α3 + α2, α, α, 0, 0, 0} be a codeword where
αv+α3+α2 = α6+αv → (α11, α6)→ CTAC , αv+α3+α2+α→ (α6, α11)→
ACCT , α→ (α, α)→ TTTT .

Then DNA corresponding of c1 is

Θ(c1) = {ATAT ATAT CTAC AAAA ATAT CTAC ACCT ACCT CTAC

ATAT AAAA CTAC ATAT ATAT AAAA AAAA AAAA}.

The reversible DNA corresponding of c1 (Θ(c1)r) is obtained according to
Equation 5 as follows:

Θ(c1)r = Θ(ψ(α)Λ3) = Θ(α4Λ3)

= Θ(α4 × {0, 0, 0, 1, 1, v + α2 + α+ 1, 0, 1, v + α2 + α+ 1, v + α2 + α,

v + α2 + α, v + α2 + α+ 1, 1, 0, v + α2 + α+ 1, 1, 1})
= Θ(0, 0, 0, α4, α4, α14 + vα4, 0, α4, α14 + vα4, α9 + vα4, α9 + vα4,

α14 + vα4, α4, 0, α14 + vα4, α4, α4)

= {AAAA AAAA AAAA TATA TATA CATC AAAA

TATA CATC TCCA TCCA CATC TATA AAAA

CATC TATA TATA}.

5. Conclusion

Here we define and construct m-adic residue codes over the non-chain ring
Fq[v]/(v2 − v) unlike previous papers which work over finite fields and also
have more restrictions on their parameters. We obtain some optimal codes
with respect to Griesmer bound [12] which also makes this study even more
interesting. We also apply these results for constructing DNA codes for which
palindromic polynomials together with a specific automorphism map ψ over
non-chain rings are shown to be more suitable. An obstacle which is an open
problem is to find palindromic polynomials over these rings. This problem and
applications to different non-chain rings are future studies on this direction.
Another and the most challenging problem is to find a good match between
DNA codes obtained from algebraic structures and real DNA data.

Ah
ea
d 
of
 P
rin
t



m-ADIC RESIDUE CODES OVER Fq [v]/(v
2 − v) AND DNA CODES 15

Acknowledgment. The authors wish to express their thanks to the reviewers
and their enlightening remarks that led to an improved version of our paper.

References

[1] T. Abualrub, A. Ghrayeb, and X. N. Zeng, Construction of cyclic codes over GF(4) for

DNA computing, J. Franklin Inst. 343 (2006), no. 4-5, 448–457.

[2] L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266
(1994), 1021–1024.

[3] A. Bayram, E. S. Oztas, and I. Siap, Codes over F4 + vF4 and some DNA applications,

Des. Codes Cryptogr. 80 (2016), no. 2, 379–393.
[4] R. A. Brualdi and V. S. Pless, Polyadic codes, Discrete Appl. Math. 25 (1989), no. 1-2,

3–17.

[5] X. Dong, L. Wenjie, and Z. Yan, Generating idempotents of cubic and quartic residue
codes over field F2, Designs, Computer Engineering and Applications, North China

Computing Technology Institute 49 (2013), 41–44.
[6] V. R. Job, M-adic residue codes, IEEE Trans. Inform. Theory 38 (1992), no. 2, part 1,

496–501.

[7] J. Lichtenberg, A. Yilmaz, J. Welch, K. Kurz, X. Liang, F. Drews, K. Ecker, S. Lee, M.
Geisler, E. Grotewold, and L. Welch, The word landscape of the non-coding segments of

the Arabidopsis thaliana genome, BMC Genomics 10 (2009), 463.

[8] S. Ling and C. Xing, Coding Theory, Cambridge University Press, Cambridge, 2004.
[9] J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes, IEEE Trans.

Inform. Theory 24 (1978), no. 6, 730–737.

[10] E. S. Oztas and I. Siap, Lifted polynomials over F16 and their applications to DNA
codes, Filomat 27 (2013), no. 3, 459–466.

[11] , On a generalization of lifted polynomials over finite fields and their applications
to DNA codes, Int. J. Comput. Math. 92 (2015), no. 9, 1976–1988.

[12] K. Shiromoto and L. Storme, A Griesmer bound for linear codes over finite quasi-

Frobenius rings, Discrete Appl. Math. 128 (2003), no. 1, 263–274.
[13] I. Siap, T. Abualrub, and A. Ghrayeb, Cyclic DNA codes over the ring F2[u]/(u2 − 1)

based on the deletion distance, J. Franklin Inst. 346 (2009), no. 8, 731–740.

[14] B. Yildiz and I. Siap, Cyclic codes over F2[u]/(u4 − 1) and applications to DNA codes,
Comput. Math. Appl. 63 (2012), no. 7, 1169–1176.

[15] A. J. van Zanten, A. Bojilov, and S. M. Dodunekov, Generalized residue and t-residue

codes and their idempotent generators, Des. Codes Cryptogr. 75 (2015), no. 2, 315–334.

Ferhat Kuruz
Department of Mathematics
Yildiz Technical University
Esenler 34220, Turkey

Email address: kuruz@yildiz.edu.tr

Elif Segah Oztas
Department of Mathematics

Karamanoglu Mehmetbey University

Karaman, Turkey
Email address: esoztas@kmu.edu.tr

Irfan Siap
Jacodesmath Institute, Turkey

Email address: irfan.siap@gmail.com

Ah
ea
d 
of
 P
rin
t


