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Abstract. We generalize some of the congruences in [20] to periodic
knotted trivalent graphs. As an application, a criterion derived from one

of these congruences is used to obstruct periodicity of links of few crossings

for the odd primes p = 3, 5, 7, and 11. Moreover, we derive a new criterion
of periodic links. In particular, we give a sufficient condition for the period

to divide the crossing number. This gives some progress toward solving
the well-known conjecture that the period divides the crossing number in

the case of alternating links.

1. introduction

Periodicity is reflected in many examples of polynomial invariants for links
such as the Jones polynomial [17] and its 2-variable generalization [5,6,20,22–
25], the Alexander polynomial [8,15,16], and the twisted Alexander polynomials
[10]. Different criteria of periodicity have been found in terms of hyperbolic
structures on knot complements [1], homology groups of cyclic branched covers
[18,19], concordance invariants of Casson and Gordan [19], Khovanov homology
[7], link Floer homology [9] and the Heegaard Floer correction terms of the finite
cyclic branched covers of knots [11].

Our purpose in this paper is to study periodicity of knotted trivalent graphs
in terms of the rational function defined in [4] to recover the Kauffman poly-
nomial as a state summation. The trivalent graphs considered are of two types
planar and knotted embedded in R3. Each of which has two types of edges
called standard and wide such that each trivalent vertex is incident to one wide
edge and two standard edges. We refer the reader to [4] for further details
about this topic.

The congruences of periodic knotted trivalent graphs are given in terms
of this rational function. The restriction of these congruences to links yields
the congruences of periodic links in terms of the Kauffman polynomial given in
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[20]. We apply a criterion derived from these congruences to study periodicity of
some examples of knots and links. In particular, we give two tables summarizing
the application of this criterion for all knots of 11 crossings or less and links of
8 crossings or less for the odd primes p = 3, 5, 7, 11.

Finally, we provide a new criterion of periodic links in terms of the breadth
of a specialized Kauffman polynomial modulo the odd prime. This criterion
implies that the period of a periodic link divides its crossing number under
some condition. If this sufficient condition holds for alternating links, then we
obtain a positive solution to the well-known conjecture that the period of a
periodic alternating link divides its crossings number.

2. The Kauffman polynomial of knotted trivalent graphs

Kauffman in [12] introduced a new two-variable Laurent polynomial Λ∗D =
Λ∗D(a, z) of regular isotopy of unoriented diagrams of links. If w is the writhe
of the oriented diagram D, then F ∗L(a, z) = a−wΛ∗D(a, z) is an invariant of the
oriented link L. The polynomial Λ∗D(a, z) is defined recursively by the following
relations.

(a) If D is a simple closed curve, then Λ∗D = 1.
(b) If D1 and D2 are related by a finite sequence of Reidemeister moves of

type II or III, then Λ∗D1
= Λ∗D2

.
(c)

Λ∗ = aΛ∗ , Λ∗ = a−1Λ∗ .

(d)

Λ∗ − Λ∗ = z(Λ∗ − Λ∗ ).

Throughout this paper, diagrams that appear in one equation are identical
except as indicated in a small disk.

The above polynomial is sometimes called the Dubrovnik version of the two-
variable Kauffman polynomial of unoriented links with oriented version FL(a, z)
defined by FL(a, z) = a−wΛD(a, z), where w is the writhe of the diagram D. If
D represents a link with r components, then the original Kauffman polynomials
ΛD(a, z), FL(a, z) for unoriented and oriented links respectively are related to
the above polynomials Λ∗D(a, z), F ∗L(a, z) by the following formulas. The first
one is due to Lickorish; see [12, Page 466], [13, Page 104] and the second one
follows from the first one.

(1) ΛD(a, z) = (−1)r+1(−
√
−1)−w(D)Λ∗D(−

√
−1a,

√
−1z).

(2) FL(a, z) = F ∗L(−
√
−1a,

√
−1z).
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In [4], the authors constructed a three-variable rational function which is
an invariant of certain type of knotted unoriented trivalent graphs whose re-
striction to links yields a version of the Kauffman polynomial. We give a quick
overview of this construction.

This polynomial is obtained as a state summation, the states are planar
trivalent graphs. The states of any knotted trivalent graph are obtained by ap-
plying the recurrence formulas in Equations 3 and 4 with commuting variables
A and B. These two equations associate to each knotted trivalent graph Υ a
formal linear combination of planar trivalent graphs.

= A + B +(3)

= A + B +(4)

The authors of [4] assigned a unique polynomial P (Γ) ∈ Z[a±1, A,B, (A −
B)±1] to each planar trivalent graph that takes the value 1 for the unknot and
satisfies many identities mentioned in [4]. One of these identities that will be
used in our paper is as follows:

P

( )
= P

( )
(5)

After resolving all the crossings of the knotted trivalent graph, we express
it as a finite formal linear combination of the states whose coefficients are
monomials in the commuting variables A and B. Now we associate to the
knotted trivalent graph Υ the polynomial PΥ that is obtained by summing up
the graph polynomials P (Γ) weighted by their coefficients. That is,

PΥ =
∑

Γ

AmBnP (Γ),

where m,n is the number of times of A-resolution, B-resolution respectively to
obtain the graph state Γ.

We refer the reader to [4, Theorem 1] for the proof of the existence and
uniqueness of the polynomial P (Γ) for any planar trivalent graph. The polyno-
mial PΥ restricted to links gives the Kauffman polynomial using the following
formula that first appeared in [4, Corollary 1]:

Λ∗D(a, z) = Λ∗D(a,A−B) = PD(a,A,B).

3. Main results

Hereafter, we let R to be the subring of Z[ω, a±1, A,B, (A−B)±1] generated

by ω, a±1, A,B and a−a−1

A−B for any primitive (p−1)-th root of unity ω. Observe
that A − B is not invertible in the subring R. Now we define two ideals I
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and J of the subring R. The ideal I generated by p and (A − B)p and the

ideal J generated by p and
(
a−a−1

A−B

)
−ω. We need the following lemma that is

motivated by [20, Lemma 1.1] and generalize it to the case of knotted trivalent
graphs.

Lemma 3.1. For any knotted trivalent graph Υ, we have PΥ(a,A,B) ∈ R. In
particular, we have Λ∗D(a,A−B) ∈ R.

Proof. We use induction on the number of pairs of trivalent vertices in the
knotted trivalent graph Υ. In the case that Υ has zero pairs of trivalent vertices,
then Υ simply represents a link diagram D of some link. In this case, we use
induction on the number of crossings in the diagram D. The result holds for
the trivial link of n components simply since Λ∗D(a,A−B) = PD(a,A−B) =(
a−a−1

A−B + 1
)n−1

∈ R. Now suppose that the result holds for any link diagram

of m crossings or less. Let D be a link diagram of m + 1 crossings and pick
a crossing in this link diagram. We assume that the result holds for the link
diagram D after changing a crossing. To simplify notation, we use D1 for the
link diagram D and D2 for the link diagram of D after changing a crossing. Now
we apply Equations 3 and 4 on D1 and D2 respectively under the assumption
that the crossing is of the same type as in Equation 3. We subtract these two
equations, to get

Λ∗D1
(a,A,B)− Λ∗D2

(a,A,B) = (A−B)(Λ∗ − Λ∗ ).

Finally the result holds using the induction hypothesis on the right hand
side of the above equation and the assumption that the result holds for D2.

Now if the knotted trivalent graph Υ contains (m + 1) pairs of trivalent
vertices then with the aid of the recurrence formulas given in Equations 3 and
4, we obtain

Υ = Γ−AΥ0 −BΥ1,

for some knotted trivalent graphs Γ,Υ0 and Υ1 of m pairs of trivalent vertices.
Finally, the result follows from the induction hypothesis on each term. �

Now we generalize [20, Theorem 1.4] to the case of knotted trivalent graphs.

Theorem 3.2. For any p-periodic knotted trivalent graph Υ, we have

PΥ(a,A,B) ≡ PΥν
(a,A,B) mod I,

where Υν is the knotted trivalent graph Υ after changing all crossings of the
orbit ν. Therefore, we conclude PΥ(a,A,B) ≡ PΥ′ (a,A,B) = PΥ(a−1, A,B)

mod I, where Υ
′
is the mirror image of Υ.

Proof. We apply Equation 3 and Equation 4 to all crossings of the orbit ν in Υ
and the corresponding crossings in Υν . Using Equation 5, we can pair the terms
in both summations in a way that the graph state in both terms is identical but
with possibly different coefficients. This can be achieved by using A-resolution
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KAUFFMAN POLYNOMIAL OF PERIODIC KNOTTED TRIVALENT GRAPHS 5

for the crossings of the orbit ν in Υ and B-resolution for the corresponding
crossings in Υν or vice versa. By considering the state summations modulo p,
we need only to examine the contributions from states that are p-periodic.

Finally, we consider difference between PΥ and PΥ′ that is

PΥ(a,A,B)− PΥν
(a,A,B) ≡ (Ap −Bp) (PΥ0

(a,A,B)− PΥ1
(a,A,B))

≡ (A−B)p (PΥ0(a,A,B)− PΥ1(a,A,B)) mod p

≡ 0 mod I,

where Υ0 and Υ1 are the knotted trivalent graph Υ after applying A- and B-
resolutions respectively on the crossings of the orbit ν. The second statement
follows after we apply the first result to all orbits. �

Corollary 3.3. For a p-periodic link L with a p-periodic diagram D, we have
Λ∗D(a,A − B) ≡ Λ∗

D′
(a,A − B) = Λ∗D(a−1, A − B) mod I, where D

′
is the

mirror image of D. Hence, we have F ∗L(a,A − B) ≡ F ∗L(a−1, A − B) mod I
and FL(a,A−B) ≡ FL(a−1, A−B) mod I.

Proof. We know that the writhe of the p-periodic link diagram D is a multiple
of p, so w(D) = np for some n ∈ Z. Now we have ap − a−p ≡ (a − a−1)p =(
a−a−1

A−B

)p
(A − B)p ≡ 0 mod p. Therefore, we obtain a−w(D) = a−np =

(a−p)n ≡ (ap)n = anp = a−(−(w(D))) = a−w(D
′
) mod I. Now the re-

sult follows since F ∗D(a,A − B) = a−w(D)Λ∗D(a,A − B) and FD(a,A − B) =

a−w(D)ΛD(a,A− B) and the fact that w(D) = −w(D
′
) = np for some n ∈ Z.

Equation 2 implies:

FL(
√
−1a,−

√
−1(A−B)) =F ∗L(a,A−B) ≡ F ∗L(a−1, A−B)

=FL(−
√
−1a−1,−

√
−1(A−B)) mod I.

The third claim follows if we apply the above formula with a being −
√
−1a

and A−B being
√
−1(A−B). �

As a special case, we consider the following specialization for later an easy
application.

Corollary 3.4. If a = B = q, A = q−1 and L is a p-periodic link with a
p-periodic diagram D with mirror image D

′
, we have

Λ∗D(q, q−1 − q) ≡ Λ∗
D′

(q, q−1 − q) (p, qp − q−p),
and

FL(iq, iq − iq−1) ≡ FL′ (iq, iq − iq
−1) (p, qp − q−p).

Recall that FL(a, z) is an invariant of oriented links, and that it differs from
an invariant of unoriented links only by a factor of a−w(D). Thus for knots,
a choice of orientation yields no new information. On the other hand, when
considering links, the choice of orientation can affect the usefulness of Corollary
3.4, according to the following proposition:
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6 A. ABOUFATTOUM, E. A. ELSAKHAWY, K. ISTVAN, AND K. QAZAQZEH

Proposition 3.5. Given an unoriented link L, if any of its oriented versions
is not p-periodic, then the link is not p-periodic.

Proof. We use the following observation from [14, Prop. 16.4]: If the oriented
link L∗ is obtained from L by reversing the orientation of one component K,
then

FL∗(a, z) = a4lk(K,L−K)FL(a, z).

After noting that the linking number of any two sublinks of L will also be
divisible by p in the case of the link being p-periodic, we see that the two
polynomials FL(iq, iq − iq−1) and FL∗(iq, iq − iq−1) will differ by a factor of
q2pn ≡ 1 (qp − q−p) for some n ∈ Z since q2p ≡ 1 (qp − q−p). �

This is very natural since periodicity is independent of orientation. For
links with r ≥ 2 components, we thus have potentially 2r−1 criteria. It often
happens that a link will pass the criterion of Corollary 3.4 for some choices of
orientation, but not all. For example, when p = 5, this situation occurs for
L6a3, L7a2, L8a10, L8a13, and L8n1.

The next result generalizes [20, Equation 4.6] to the case of knotted trivalent
graphs as follows:

Theorem 3.6. For any p-periodic knotted trivalent graph Υ, we have

PΥ(a,A,B) ≡ (PΥ∗(a,A,B))p mod J,

where Υ∗ is the quotient knotted trivalent graph of Υ.

Proof. We use induction on the number of pairs of trivalent vertices in Υ∗.
In the case, Υ∗ has zero pairs of trivalent vertices, then Υ represents a link
diagram D of some link. Now, there is a one-to-one correspondence between
the binary resolving tree of D to compute Λ∗D and the binary resolving tree of
D∗ to compute Λ∗D∗ . Now the result follows using induction on the number of
crossings and assuming that the result holds for crossing changes.

Now if Υ contains (m + 1) pairs of trivalent vertices, then with the aid of
the recurrence formulas given in Equations 3 and 4, we obtain

Υ = Γ−ApΓ0 −BpΓ1 mod p,

for some p-periodic knotted trivalent graphs Γ,Γ0, and Γ1 of m pairs of trivalent
vertices with quotient knotted trivalent graph

Υ∗ = Γ∗ −AΓ0∗ −BΓ1∗,

where Γ0∗ and Γ1∗ are the quotient knotted trivalent graphs of Γ0 and Γ1

respectively. Finally, the result follows from the induction hypothesis on each
term. �

Corollary 3.7. For any p-periodic link L of periodic diagram D, we have

Λ∗D(a, ω(a− a−1)) ≡
(
Λ∗D∗(a, ω(a− a−1))

)p
mod p
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KAUFFMAN POLYNOMIAL OF PERIODIC KNOTTED TRIVALENT GRAPHS 7

This implies

F ∗L(a, ω(a− a−1)) ≡ (F ∗L∗(a, ω(a− a−1)))p mod p

and
FL(a, ω(a− a−1)) ≡ (FL∗(a, ω(a− a−1)))p mod p,

where L∗ is the quotient link with the quotient diagram D∗.

We obtain an easy criterion of periodic links from Corollary 3.7 as follows:

Theorem 3.8. Let L be a p-periodic link of crossing number c. Then p divides
the breadth of FL(a, ω(a − a−1)) modulo p. In particular, if the breadth of
FL(a, ω(a− a−1)) modulo p is either c or 2c, then p divides c.

Proof. We assume that D is a p-periodic diagram of the link L. All the terms
in Λ∗D(a, ω(a−a−1)) modulo p have powers multiple of p according to Corollary
3.7. This implies that the terms of F ∗L(a, ω(a−a−1)) also have powers multiple
of p since the writhe of D is a multiple of p. Now the result follows since the
breadth of F ∗L(a, ω(a− a−1)) modulo p is equal to the breadth of Λ∗D(a, ω(a−
a−1)) modulo p. �

4. Applications and further remarks

The sufficient condition of Theorem 3.8 for the period to divide the crossing
number of a given link can be checked by hand. But it would be very interesting
to determine all links or at least families of links that satisfy this sufficient
condition. We like to point out the result of Thistlethwaite [21] that helps in
reducing the work of verifying the sufficient condition for adequate links. If
ΛD(a, z) =

∑
j≥0,i

uija
izj and D is an n-crossing diagram of the link L, then uij

can only be nonzero if i+j ≤ n and −i+j ≤ n with equalities hold if and only if
D is adequate. In this case, we conclude that the crossing number of L is n and
the truncated Kauffman polynomial ΛD(a, z) =

∑
j+|i|=n

uija
izj 6= 0. Therefore,

if ΛD(a, ω(a−a−1)) modulo p has breadth 2c = 2n, then the sufficient condition
holds for this link. As a special case, we can apply this argument for any
alternating link.

Based on the above argument, we like to promote for the following conjecture
that generalizes the conjecture in [11].

Conjecture 4.1. If L is a periodic adequate link, then the period divides its
crossing number.

As an application, we want to see how to apply the criterion in Corollary
3.4 to obstruct periodicity of some examples of links.

Remark 4.2. The criterion in Corollary 3.4 is valid for all positive integers p ≥ 2
not necessarily for odd primes. All links pass this criterion for p = 2 as a result
of the following:

FK(iq, iq − iq−1) = FK′ ((iq)
−1, iq − iq−1) = FK′ (−iq

−1, iq − iq−1)
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≡ FK′ (iq, iq − iq
−1) (2, q2 − q−2).

The first equation follows since taking the mirror image is equivalent to ex-
changing a and a−1 in the Kauffman polynomial and the last equivalence since
iq ≡ iq−1 modulo the ideal (2, q2 − q−2). Also, we believe that all links pass
this criterion for p = 3, see the tables at the end.

Example 4.3. The knot K = 10101 has

FK(iq, iq − iq−1) = 12q−20 − 88q−18 + 310q−16 − 718q−14 + 1210q−12

− 1550q−10 + 1514q−8 − 1088q−6 + 542q−4− 168q−2+ 25

and

FK′ (iq, iq − iq
−1) = 12q20 − 88q18 + 310q16 − 718q14 + 1210q12 − 1550q10

+ 1514q8 − 1088q6 + 542q4 − 168q2 + 25.

One can check that FK(iq, iq − iq−1) ≡ FK′ (iq, iq − iq−1) (p, qp − q−p) only
for p = 2, 3. Hence, we conclude that the knot 10101 is not periodic of period
5 or 7 according to Corollary 3.4. This confirms the result of Traczyk in [22]
that this knot has no period 7. Similarly, we can also show that 10105 cannot
be 7-periodic, a result first shown in [17].

The following two tables summarize the results for all knots and links of few
crossings using the Mathematica package KnotTheory [2].

Knots Total: Obstructed: Obstructed: Obstructed: Obstructed:
Crossing Number p = 3: p = 5: p = 7: p = 11:

3 1 0 1 1 1
4 1 0 0 0 0
5 2 0 1 2 2
6 3 0 2 2 2
7 7 0 7 6 7
8 21 0 14 15 16
9 49 0 39 48 48
10 165 0 120 150 151
11 552 0 434 545 550
≤ 11 801 0 618 769 777

Links Total Unoriented/Oriented: Obstructed Obstructed Obstructed
Crossing Number p = 3: p = 5: p = 7:

2 1/2 0 2/2 1/2
4 1/2 0 1/2 1/2
5 1/2 0 2/2 1/2
6 6/18 0 4/13 5/13
7 9/20 0 9/19 9/20
8 29/96 0 18/45 28/83
≤ 8 47/140 0 36/83 45/122
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KAUFFMAN POLYNOMIAL OF PERIODIC KNOTTED TRIVALENT GRAPHS 9

Finally, we use the criterion in Theorem 3.8 to study the possible periods
of the first known example of adequate non alternating knot namely the knot
10152.

Example 4.4. The knot diagram D of the knot 10152 in Rolfsen’s table [2]
has Λ∗D(a, z) = ΛD(ia,−iz) = −z4a6 + 2z5a5− z6a4− z8a−2. Now we check by

hand that the breadth of Λ∗D(a, ω(a− a−1)) modulo p is 20 for all odd primes.
Therefore, the only two possible prime periods of this knot is either 2 or 5
according to Theorem 3.8. Note that this result supports Conjecture 4.1 since
2 and 5 are the only prime divisors of the crossings number 10. This agrees
with what is known about the periodicity of this knot in [3, Appendix C, Table
I].
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