Bull. Korean Math. Soc. **0** (0), No. 0, pp. 1–0 https://doi.org/10.4134/BKMS.b170093

pISSN: 1015-8634 / eISSN: 2234-3016

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

ABSTRACT. Jin studied lightlike hypersurfaces of an indefinite Kaehler manifold [6, 8] or indefinite trans-Sasakian manifold [7] with a quarter-symmetric metric connection. Jin also studied generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection [10]. We study generic lightlike submanifolds of an indefinite Kaehler manifold with a quarter-symmetric metric connection.

1. Introduction

A lightlike submanifold M of an indefinite almost complex manifold \overline{M} is called *generic* if there exists a screen distribution S(TM) of M such that

$$(1.1) J(S(TM)^{\perp}) \subset S(TM),$$

where $S(TM)^{\perp}$ is the orthogonal complement of S(TM) in the tangent bundle $T\overline{M}$ of \overline{M} . The generic lightlike submanifold was introduced by Jin-Lee [11] and later, studied by several authors [3–5,10,12]. The theory of generic lightlike submanifolds is an extension of that of lightlike hypersurfaces.

A linear connection $\overline{\nabla}$ on a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is said to be a quarter-symmetric connection if its torsion tensor \overline{T} satisfies

$$(1.2) \overline{T}(\overline{X}, \overline{Y}) = \theta(\overline{Y})J\overline{X} - \theta(\overline{X})J\overline{Y},$$

where J is a (1,1)-type tensor field and θ is a 1-form associated with a smooth unit vector field ζ by $\theta(X) = \overline{g}(X,\zeta)$. Throughout this paper, we denote by $\overline{X}, \overline{Y}$ and \overline{Z} the smooth vector fields on \overline{M} . Furthermore, if $\overline{\nabla}$ is a metric connection, then we say that $\overline{\nabla}$ is a quarter-symmetric metric connection. The notion of quarter-symmetric metric connection was introduced Yano-Imai [14]. Recently, Jin extended this notion to indefinite Kaehler manifold or indefinite trans-Sasakian manifold and then, studied the geometry of lightlike hypersurfaces of an indefinite Kaehler manifold [6, 8] or indefinite trans-Sasakian

Received February 2, 2017; Accepted August 10, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.

Key words and phrases. quarter-symmetric metric connection, generic lightlike submanifold, indefinite Kaehler structure.

manifold [7] with a quarter-symmetric metric connection. Also, Jin studied generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection [10].

Remark 1.1. Denote by $\widetilde{\nabla}$ the Levi-Civita connection of an indefinite Kaehler manifold $(\overline{M}, \overline{g}, J)$ with respect to \overline{g} . It is known [8] that a linear connection $\overline{\nabla}$ on \overline{M} is a quarter-symmetric metric connection if and only if $\overline{\nabla}$ sinisfies

$$(1.3) \overline{\nabla}_{\overline{Y}} \overline{Y} = \widetilde{\nabla}_{\overline{Y}} \overline{Y} - \theta(\overline{X}) J \overline{Y}.$$

The object of study of this paper is generic lightlike submanifolds of an indefinite Kaehler manifold $(\overline{M}, \overline{g}, J)$ with a quarter-symmetric metric connection, in which the tensor field J, defined by (1.2), is identical with the indefinite almost complex structure J on $(\overline{M}, \overline{g}, J)$.

In this paper, by the method of [10] but using indefinite Kaehler manifolds instead of indefinite trans-Sasakian manifolds and indefinite complex space forms instead of indefinite generalized Sasakian space forms, we study generic lightlike submanifolds of an indefinite Kaehler manifold and indefinite complex space form with a quarter-symmetric metric connection.

2. Preliminaries

Let $\overline{M}=(\overline{M},\overline{g},J)$ be an indefinite Kaeler manifold, where \overline{g} is a semi-Riemannian metric and J is an indefinite almost complex structure such that

$$(2.1) J^{2}\overline{X} = -\overline{X}, \overline{g}(J\overline{X}, J\overline{Y}) = \overline{g}(\overline{X}, \overline{Y}), (\widetilde{\nabla}_{\overline{Y}}J)\overline{Y} = 0.$$

Replacing the Levi-Civita connection $\widetilde{\nabla}$ by the quarter-symmetric metric connection $\overline{\nabla}$ given by (1.3), the third equation of (2.1) is reduced to

$$(2.2) (\overline{\nabla}_{\overline{Y}}J)\overline{Y} = 0.$$

Let (M,g) be an m-dimensional lightlike submanifold of an indefinite Kaehler manifold \overline{M} of dimension (m+n). Then the radical distribution Rad(TM) of M, defined by $Rad(TM) = TM \cap TM^{\perp}$, is a subbundle of the tangent bundle TM and the normal bundle TM^{\perp} , of rank $r (1 \leq r \leq \min\{m, n\})$. In case $1 < r < \min\{m, n\}$, we say that M is an r-lightlike submanifold [2] of \overline{M} . In this case, there exist two complementary non-degenerate distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} respectively, which are called the screen and co-screen distributions of M [2], such that

$$TM = Rad(TM) \oplus_{orth} S(TM), TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp}),$$

where \bigoplus_{orth} denotes the orthogonal direct sum. Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_i$ the i-th equation of (2.1). We use the same notations for any others. Let X, Y, Z and W be the vector fields on M, unless otherwise specified. We use the following range of indices:

$$i, j, k, \ldots \in \{1, \ldots, r\}, \quad a, b, c, \ldots \in \{r + 1, \ldots, n\}.$$

Let tr(TM) and tr(TM) be complementary vector bundles to TM in $T\overline{M}_{|M|}$ and TM^{\perp} in $S(TM)^{\perp}$ respectively and let $\{N_1, \ldots, N_r\}$ be a lightlike basis of $tr(TM)_{|U|}$, where \mathcal{U} is a coordinate neighborhood of M, such that

$$\overline{g}(N_i, \xi_j) = \delta_{ij}, \quad \overline{g}(N_i, N_j) = 0,$$

where $\{\xi_1, \ldots, \xi_r\}$ is a lightlike basis of $Rad(TM)_{|_{\mathcal{U}}}$. Then we have

$$T\overline{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM)$$
$$= \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM) \oplus_{orth} S(TM^{\perp}).$$

For the rest of this paper, we consider only r-lightlike submanifolds M, with following local quasi-orthonormal field of frames of \overline{M} :

$$\{\xi_1,\ldots,\xi_r, N_1,\ldots,N_r, F_{r+1},\ldots,F_m, E_{r+1},\ldots,E_n\},\$$

where $\{F_{r+1},\ldots,F_m\}$ and $\{E_{r+1},\ldots,E_n\}$ are orthonormal bases of S(TM) and $S(TM^{\perp})$, respectively. Denote $\epsilon_a = \overline{g}(E_a,E_a)$. Then $\epsilon_a\delta_{ab} = \overline{g}(E_a,E_b)$.

Let P be the projection morphism of TM on S(TM). Then the local Gauss-Weingarten formulae of M and S(TM) are given respectively by

(2.3)
$$\overline{\nabla}_X Y = \nabla_X Y + \sum_{i=1}^r h_i^{\ell}(X, Y) N_i + \sum_{a=r+1}^n h_a^{s}(X, Y) E_a,$$

(2.4)
$$\overline{\nabla}_X N_i = -A_{N_i} X + \sum_{j=1}^r \tau_{ij}(X) N_j + \sum_{a=r+1}^n \rho_{ia}(X) E_a,$$

(2.5)
$$\overline{\nabla}_X E_a = -A_{E_a} X + \sum_{i=1}^r \phi_{ai}(X) N_i + \sum_{b=r+1}^n \sigma_{ab}(X) E_b;$$

(2.6)
$$\nabla_X PY = \nabla_X^* PY + \sum_{i=1}^r h_i^*(X, PY) \xi_i,$$

(2.7)
$$\nabla_X \xi_i = -A_{\xi_i}^* X - \sum_{j=1}^r \tau_{ji}(X) \xi_j,$$

where ∇ and ∇^* are induced linear connections on M and S(TM) respectively, h_i^ℓ and h_a^s are called the local second fundamental forms on M, h_i^* are called the local screen second fundamental forms on S(TM). A_{N_i} , A_{E_a} and $A_{\xi_i}^*$ are linear operators on M, and τ_{ij} , ρ_{ia} , ϕ_{ai} and σ_{ab} are 1-forms on M.

For any generic lightlike submanifold M, from (1.1) we show that the distributions J(Rad(TM)), J(ltr(TM)) and $J(S(TM^{\perp}))$ are vector subbundles of S(TM). Thus there exist two non-degenerate almost complex distributions H_o and H with respect to J, i.e., $J(H_o) = H_o$ and J(H) = H, such that

$$S(TM) = \{J(Rad(TM)) \oplus J(ltr(TM))\} \oplus_{orth} J(S(TM^{\perp})) \oplus_{orth} H_o,$$

$$H = Rad(TM) \oplus_{orth} J(Rad(TM)) \oplus_{orth} H_o.$$

In this case, the tangent bundle TM of M is decomposed as follows:

(2.8)
$$TM = H \oplus J(ltr(TM)) \oplus_{orth} J(S(TM^{\perp})).$$

Consider 2r local null vector fields U_i and V_i , (n-r) local non-null unit vector fields W_a , and their 1-forms u_i , v_i and w_a defined by

$$(2.9) U_i = -JN_i, V_i = -J\xi_i, W_a = -JE_a,$$

(2.10)
$$u_i(X) = g(X, V_i), \quad v_i(X) = g(X, U_i), \quad w_a(X) = \epsilon_a g(X, W_a).$$

Denote by S the projection morphism of TM on H and by F the tensor field of type (1,1) globally defined on M by $F = J \circ S$. Then JX is expressed as

(2.11)
$$JX = FX + \sum_{i=1}^{r} u_i(X)N_i + \sum_{a=r+1}^{n} w_a(X)E_a.$$

Applying J to (2.11) and using (2.1)₁ and (2.9), we have

(2.12)
$$F^{2}X = -X + \sum_{i=1}^{r} u_{i}(X)U_{i} + \sum_{a=r+1}^{n} w_{a}(X)W_{a}.$$

We say that F is the *induced structure tensor field* of J on M.

3. Quarter-symmetric metric connection

Substituting (2.3) into $(\overline{\nabla}_X \overline{g})(Y, Z) = 0$, we obtain

(3.1)
$$(\nabla_X g)(Y, Z) = \sum_{i=1}^r \{ h_i^{\ell}(X, Y) \eta_i(Z) + h_i^{\ell}(X, Z) \eta_i(Y) \},$$

where η_i is a 1-form such that $\eta_i(X) = \overline{g}(X, N_i)$. Substituting (2.3) and (2.11) into (1.2) and then, comparing the tangent, lightlike transversal and co-screen components of the left and right terms, we have

(3.2)
$$T(X,Y) = \theta(Y)FX - \theta(X)FY,$$

(3.3)
$$h_i^{\ell}(X,Y) - h_i^{\ell}(Y,X) = \theta(Y)u_i(X) - \theta(X)u_i(Y),$$

(3.4)
$$h_a^s(X,Y) - h_a^s(Y,X) = \theta(Y)w_a(X) - \theta(X)w_a(Y),$$

where T is the torsion tensor with respect to the induced connection ∇ .

From the facts that $h_i^{\ell}(X,Y) = \overline{g}(\overline{\nabla}_X Y, \xi_i)$ and $\epsilon_a h_a^s(X,Y) = \overline{g}(\overline{\nabla}_X Y, E_a)$, we know that h_i^{ℓ} and h_a^s are independent of the choice of S(TM). The local second fundamental forms are related to their shape operators by

(3.5)
$$h_i^{\ell}(X,Y) = g(A_{\xi_i}^*X,Y) - \sum_{k=1}^r h_k^{\ell}(X,\xi_i)\eta_k(Y),$$

(3.6)
$$\epsilon_a h_a^s(X, Y) = g(A_{E_a} X, Y) - \sum_{k=1}^r \phi_{ak}(X) \eta_k(Y),$$

(3.7)
$$h_i^*(X, PY) = g(A_{N_i}X, PY).$$

Applying $\overline{\nabla}_X$ to $g(\xi_i, \xi_j) = 0$, $\overline{g}(\xi_i, E_a) = 0$, $\overline{g}(N_i, N_j) = 0$, $\overline{g}(N_i, E_a) = 0$ and $\overline{g}(E_a, E_b) = \epsilon \delta_{ab}$, we obtain

$$(3.8) h_i^{\ell}(X,\xi_j) + h_j^{\ell}(X,\xi_i) = 0, h_a^{s}(X,\xi_i) = -\epsilon_a \phi_{ai}(X),$$

$$\eta_j(A_{N_i}X) + \eta_i(A_{N_j}X) = 0, \overline{g}(A_{E_a}X,N_i) = \epsilon_a \rho_{ia}(X),$$

$$\epsilon_b \sigma_{ab} + \epsilon_a \sigma_{ba} = 0 \text{and} h_i^{\ell}(X,\xi_i) = 0, h_i^{\ell}(\xi_j,\xi_k) = 0.$$

Applying $\overline{\nabla}_X$ to (2.9) and (2.11) by turns and using (2.2) \sim (2.5), (2.7), (2.9) \sim (2.11) and (3.5) \sim (3.8)₂, we have

(3.9)
$$h_{j}^{\ell}(X, U_{i}) = h_{i}^{*}(X, V_{j}), \qquad \epsilon_{a} h_{i}^{*}(X, W_{a}) = h_{a}^{s}(X, U_{i}), h_{j}^{\ell}(X, V_{i}) = h_{i}^{\ell}(X, V_{j}), \qquad \epsilon_{a} h_{i}^{\ell}(X, W_{a}) = h_{a}^{s}(X, V_{i}), \epsilon_{b} h_{b}^{s}(X, W_{a}) = \epsilon_{a} h_{a}^{s}(X, W_{b}),$$

(3.10)
$$\nabla_X U_i = F(A_{N_i} X) + \sum_{j=1}^r \tau_{ij}(X) U_j + \sum_{a=r+1}^n \rho_{ia}(X) W_a,$$

(3.11)
$$\nabla_X V_i = F(A_{\xi_i}^* X) - \sum_{j=1}^r \tau_{ji}(X) V_j + \sum_{j=1}^r h_j^{\ell}(X, \xi_i) U_j - \sum_{a=r+1}^n \epsilon_a \phi_{ai}(X) W_a,$$

(3.12)
$$\nabla_X W_a = F(A_{E_a} X) + \sum_{i=1}^r \phi_{ai}(X) U_i + \sum_{b=r+1}^n \sigma_{ab}(X) W_b,$$

(3.13)
$$(\nabla_X F)(Y) = \sum_{i=1}^r u_i(Y) A_{N_i} X + \sum_{a=r+1}^n w_a(Y) A_{E_a} X$$
$$- \sum_{i=1}^r h_i^{\ell}(X, Y) U_i - \sum_{a=r+1}^n h_a^{s}(X, Y) W_a.$$

4. Recurrent and Lie recurrent submanifolds

Recently, Jin [10] studied recurrent and Lie recurrent generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We now follow the general scheme in [10]. Using the method of [10], we study recurrent and Lie recurrent generic lightlike submanifolds of an indefinite Kaehler manifold with a quarter-symmetric metric connection.

Definition. We say that a lightlike submanifold M of \overline{M} is called

- (1) irrotational [13] if $\overline{\nabla}_X \xi_i \in \Gamma(TM)$ for all $i \in \{1, \ldots, r\}$,
- (2) solenoidal [12] if A_{E_a} and A_{N_i} are S(TM)-valued,
- (3) statical [12] if M is both irrotational and solenoidal.

Remark 4.1. From (2.3) and $(3.8)_2$, the item (1) is equivalent to

(4.1)
$$h_i^{\ell}(X, \xi_i) = 0, \qquad h_a^{s}(X, \xi_i) = \phi_{ai}(X) = 0.$$

By using $(3.8)_4$, the item (2) is equivalent to

(4.2)
$$\eta_j(A_{N_i}X) = 0, \qquad \rho_{ia}(X) = \eta_i(A_{E_a}X) = 0.$$

Denote by λ_{ij} , μ_{ia} , ν_{ia} , κ_{ab} and χ_{ij} the 1-forms on M such that

$$\lambda_{ij}(X) = h_i^{\ell}(X, U_j) = h_j^*(X, V_i), \qquad \kappa_{ab}(X) = \epsilon_a h_a^s(X, W_b),$$

(4.3)
$$\mu_{ia}(X) = h_i^{\ell}(X, W_a) = \epsilon_a h_a^s(X, V_i), \qquad \chi_{ij}(X) = h_i^{\ell}(X, V_j),$$
$$\nu_{ai}(X) = h_i^*(X, W_a) = \epsilon_a h_a^s(X, U_i).$$

Definition. The structure tensor field F of the generic lightlike submanifold M is said to be recurrent [9,10] if there exists a 1-form ϖ on M such that

$$(\nabla_X F)Y = \varpi(X)FY.$$

Theorem 4.2. Let M be a generic lightlike submanifold of an indefinite Kaehler manifold with a quarter-symmetric metric connection. If F is recurrent, then

- (1) F is parallel with respect to the induced connection ∇ on M,
- (2) M is statical,
- (3) J(ltr(TM)), $J(S(TM^{\perp}))$ and H are parallel distributions on M, and
- (4) M is locally a product manifold $M_r \times M_{n-r} \times M^{\sharp}$, where M_r, M_{n-r} and M^{\sharp} are leaves of J(ltr(TM)), $J(S(TM^{\perp}))$ and H respectively.

Proof. (1) From the above definition and (3.13), we obtain

(4.4)
$$\varpi(X)FY = \sum_{i=1}^{r} u_i(Y)A_{N_i}X + \sum_{a=r+1}^{n} w_a(Y)A_{E_a}X - \sum_{i=1}^{r} h_i^{\ell}(X,Y)U_i - \sum_{a=r+1}^{n} h_a^{s}(X,Y)W_a.$$

Replacing Y by ξ_j to this equation and using the fact that $F\xi_j = -V_j$, we get

(4.5)
$$\varpi(X)V_j = \sum_{k=1}^r h_k^{\ell}(X, \xi_j)U_k + \sum_{k=r+1}^n h_k^{s}(X, \xi_j)W_b.$$

Taking the scalar product with U_i, V_i and W_a by turns, we obtain

$$\varpi = 0,$$
 $h_i^{\ell}(X, \xi_j) = 0,$ $h_a^{s}(X, \xi_j) = \phi_{aj}(X) = 0,$

respectively. As $\varpi = 0$, F is parallel with respect to the connection ∇ .

(2) As $h_i^{\ell}(X, \xi_j) = 0$ and $h_a^s(X, \xi_j) = 0$, by (4.1) M is irrotational. Also, M is solenoidal. In fact, taking the scalar product with N_j to (4.4), we have

$$\sum_{i=1}^{r} u_i(Y)\overline{g}(A_{N_i}X, N_j) + \sum_{a=r+1}^{n} w_a(Y)\overline{g}(A_{E_a}X, N_j) = 0.$$

Taking $Y = U_i$ and $Y = W_a$ by turns, we get (4.2). Thus M is statical.

(3) Taking the scalar product with U_j to (4.4), we get

$$\sum_{i=1}^r u_i(Y)g(A_{{\scriptscriptstyle N}_i}X,U_j) + \sum_{a=r+1}^n w_a(Y)g(A_{{\scriptscriptstyle E}_a}X,U_j) = 0.$$

Taking $Y = U_k$ and $Y = W_b$ to this equation by turns, we obtain

$$(4.6) h_i^*(X, U_j) = \overline{g}(A_{N_i}X, U_j) = 0, \nu_{ai}(X) = \overline{g}(A_{E_a}X, U_i) = 0.$$

Taking the scalar product with V_j and W_b to (4.4) by turns, we have

$$(4.7) h_i^{\ell}(X,Y) = \sum_{j=1}^r \lambda_{ij}(X)u_j(Y) + \sum_{a=r+1}^n \mu_{ia}(X)w_a(Y),$$

$$\epsilon_a h_a^s(X,Y) = \sum_{j=1}^n \kappa_{ba}(X)w_b(Y),$$

by (3.6), (3.7), (4.3) and $(4.6)_2$. Replacing Y by V_i to $(4.7)_{1,2}$, we have

(4.8)
$$\chi_{ij}(X) = h_i^{\ell}(X, V_i) = 0, \qquad \mu_{ia}(X) = h_a^s(X, V_i) = 0.$$

Taking $Y = U_j$ and $Y = W_b$ to (4.4) and using (4.3), (4.6)₂ and (4.8)₂, we get

$$(4.9) A_{N_i}X = \sum_{j=1}^r \lambda_{ji}(X)U_j, A_{E_a}X = \sum_{b=r+1}^n \epsilon_b \kappa_{ba}(X)W_b.$$

Using (3.5), (4.1), $(4.8)_2$ and the non-degenerateness of S(TM), $(4.7)_1$ reduces

(4.10)
$$A_{\xi_i}^* X = \sum_{j=1}^r \lambda_{ij}(X) V_j.$$

Applying F to $(4.9)_{1,2}$, we have $F(A_{N_i}X)=0$ and $F(A_{E_a}X)=0$. Substituting these results into (3.10) and (3.12), we obtain

(4.11)
$$\nabla_X U_i = \sum_{j=1}^r \tau_{ij}(X) U_j, \qquad \nabla_X W_a = \sum_{b=r+1}^n \sigma_{ab}(X) W_b.$$

It follow that J(ltr(TM)) and $J(S(TM^{\perp}))$ are parallel distributions on M with respect to the induced connection ∇ on M, that is,

$$\nabla_X U_i \in \Gamma(J(ltr(TM))), \qquad \nabla_X W_a \in \Gamma(J(S(TM^{\perp}))).$$

Applying F to (4.10), we get $F(A_{\xi_i}^*X) = \sum_{j=1}^r \lambda_{ij}(X)\xi_j$. Thus we have

(4.12)
$$\nabla_X V_i = \sum_{j=1}^r \{ \lambda_{ij}(X) \xi_j - \tau_{ji}(X) V_j \}.$$

By directed calculations from (2.3), (4.8), (4.11)₂ and (4.12), we see that $g(\nabla_X Y, V_i) = 0$ and $g(\nabla_X Y, W_a) = 0$ for all $X \in \Gamma(TM)$ and $Y \in \Gamma(H)$. Thus $\nabla_X Y \in \Gamma(H)$, $\forall X \in \Gamma(TM)$, $\forall Y \in \Gamma(H)$.

Thus H is also a parallel distribution on M with respect to ∇ .

(4) As J(ltr(TM)), $J(S(TM^{\perp}))$ and H are parallel distributions and satisfy the decomposition form (2.8), by the decomposition theorem of de Rham [1], M is locally a product manifold $M_r \times M_{n-r} \times M^{\sharp}$, where M_r , M_{n-r} and M^{\sharp} are leaves of J(ltr(TM)), $J(S(TM^{\perp}))$ and H respectively.

Definition. The structure tensor field F of M is said to be *Lie recurrent* or L-recurrent [9] if there exists a 1-form ϑ on M such that

$$(\mathcal{L}_{x}F)Y = \vartheta(X)FY.$$

In particular, if $\vartheta=0$, that is, $\mathcal{L}_{x}F=0$, then F is called *Lie parallel*, where \mathcal{L}_{x} denotes the Lie derivative on M with respect to X, that is,

$$(\mathcal{L}_{Y}F)Y = [X, FY] - F[X, Y].$$

Theorem 4.3. Let M be a generic lightlike submanifold of an indefinite Kaehler manifold with a quarter-symmetric metric connection. If F is L-recurrent, then

- (1) F is Lie parallel,
- (2) τ_{ij} and ρ_{ia} are satisfied $\tau_{ij} \circ F = 0$ and $\rho_{ia} \circ F = 0$. Moreover,

$$\tau_{ij}(X) = \sum_{k=1}^{r} u_k(X) g(A_{N_k} V_j, N_i).$$

Proof. (1) Using (2.12), (3.2) and (3.13), we get

$$(4.13) \qquad \vartheta(X)FY = -\nabla_{FY}X + F\nabla_{Y}X - \theta(Y)X - \theta(FY)FX + \sum_{i=1}^{r} u_{i}(Y)A_{N_{i}}X + \sum_{a=r+1}^{n} w_{a}(Y)A_{E_{a}}X - \sum_{i=1}^{r} \{h_{i}^{\ell}(X,Y) - \theta(Y)u_{i}(X)\}U_{i} - \sum_{a=r+1}^{n} \{h_{a}^{s}(X,Y) - \theta(Y)w_{a}(X)\}W_{a}.$$

Let $\alpha_i = \theta(\xi_i)$. Taking $Y = \xi_j$ and $Y = V_j$ to (4.13) respectively, we have

(4.14)
$$-\vartheta(X)V_{j} = \nabla_{V_{j}}X + F\nabla_{\xi_{j}}X - \alpha_{j}X + \theta(V_{j})FX$$
$$-\sum_{i=1}^{r} \{h_{i}^{\ell}(X,\xi_{j}) - \alpha_{j}u_{i}(X)\}U_{i}$$
$$-\sum_{a=r+1}^{n} \{h_{a}^{s}(X,\xi_{j}) - \alpha_{j}w_{a}(X)\}W_{a},$$

(4.15)
$$\vartheta(X)\xi_j = -\nabla_{\xi_j}X + F\nabla_{V_j}X - \theta(V_j)X - \alpha_j FX$$

$$-\sum_{i=1}^{r} \{h_i^{\ell}(X, V_j) - \theta(V_j)u_i(X)\}U_i$$
$$-\sum_{a=r+1}^{n} \{h_a^{s}(X, V_j) - \theta(V_j)w_a(X)\}W_a.$$

Taking the scalar product with U_i to (4.14) and then, taking the scalar product with N_i to (4.15), we obtain respectively

$$-\vartheta(X)\delta_{ij} = g(\nabla_{V_j}X, U_i) - \overline{g}(\nabla_{\xi_j}X, N_i) - \alpha_j v_i(X) - \theta(V_j)\eta_i(X),$$

$$\vartheta(X)\delta_{ij} = g(\nabla_{V_i}X, U_i) - \overline{g}(\nabla_{\xi_j}X, N_i) - \alpha_j v_i(X) - \theta(V_j)\eta_i(X).$$

Comparing these two equations, we get $\vartheta = 0$. Thus F is Lie parallel.

(2) Taking the scalar product with N_i to (4.14) such that $X = W_a$ and using (3.4), (3.6), (3.8)₄ and (3.12), we get $h_a^s(U_i, V_j) = \rho_{ia}(\xi_j)$. On the other hand, taking the scalar product with W_a to (4.15) such that $X = U_i$ and using (3.10), we have $h_a^s(U_i, V_j) = -\rho_{ia}(\xi_j)$. Thus $\rho_{ia}(\xi_j) = 0$ and $h_a^s(U_i, V_j) = 0$.

Taking the scalar product with U_i to (4.14) such that $X=W_a$ and using (3.4), (3.6), (3.8)_{2,4} and (3.12), we get $\epsilon_a \rho_{ia}(V_j) = \phi_{aj}(U_i)$. On the other hand, taking the scalar product with W_a to (4.14) such that $X=U_i$ and using (3.8)₂ and (3.10), we get $\epsilon_a \rho_{ia}(V_j) = -\phi_{aj}(U_i)$. Thus $\rho_{ia}(V_j) = 0$ and $\phi_{aj}(U_i) = 0$.

Taking the scalar product with V_i to (4.14) such that $X = W_a$ and using (3.3), (3.4), (3.8)₂, (3.9)₄ and (3.12), we get $\phi_{ai}(V_j) = -\phi_{aj}(V_i)$. On the other hand, taking the scalar product with W_a to (4.14) such that $X = V_i$ and using (3.8)₂ and (3.11), we have $\phi_{ai}(V_j) = \phi_{aj}(V_i)$. Thus $\phi_{ai}(V_j) = 0$.

Taking the scalar product with W_a to (4.14) such that $X = \xi_i$ and using (2.7), (3.5) and (3.8)₂, we get $h_i^{\ell}(V_j, W_a) = \phi_{ai}(\xi_j)$. On the other hand, taking the scalar product with V_i to (4.15) such that $X = W_a$ and using (3.3) and (3.12), we have $h_i^{\ell}(V_j, W_a) = -\phi_{ai}(\xi_j)$. Thus $\phi_{ai}(\xi_j) = 0$ and $h_i^{\ell}(V_j, W_a) = 0$. Summarizing the above results, we obtain

(4.16)
$$\rho_{ia}(\xi_j) = 0$$
, $\rho_{ia}(V_j) = 0$, $\phi_{ai}(U_j) = 0$, $\phi_{ai}(V_j) = 0$, $\phi_{ai}(\xi_j) = 0$, $h_a^s(U_i, V_j) = h_i^\ell(U_i, W_a) = 0$, $h_i^\ell(V_j, W_a) = h_a^s(V_j, V_i) = 0$.

Taking the scalar product with N_i to (4.13) and using (3.8)₄, we have

$$(4.17) -\overline{g}(\nabla_{FY}X, N_i) + \overline{g}(\nabla_Y X, U_i) - \theta(Y)\eta_i(X) - \theta(FY)v_i(X)$$

$$+ \sum_{k=1}^r u_k(Y)\overline{g}(A_{N_k}X, N_i) + \sum_{a=r+1}^n \epsilon_a w_a(Y)\rho_{ia}(X) = 0.$$

Replacing X by V_i to (4.17) and using (3.5), (3.11) and (4.16)₂, we have

$$(4.18) h_j^{\ell}(FX, U_i) + \tau_{ij}(X) + \delta_{ij}\theta(FX) = \sum_{k=1}^r u_k(X)\overline{g}(A_{N_k}V_j, N_i).$$

Replacing X by ξ_j to (4.17) and using (2.7), (3.5) and (4.16)₁, we have

(4.19)
$$h_j^{\ell}(X, U_i) + \delta_{ij}\theta(X) = \sum_{k=1}^r u_k(X)\overline{g}(A_{N_k}\xi_j, N_i) + \tau_{ij}(FX).$$

Taking $X = U_k$ to (4.19), we have

$$(4.20) h_i^*(U_k, V_j) = h_i^{\ell}(U_k, U_i) = \overline{g}(A_{N_k} \xi_j, N_i) - \delta_{ij}\theta(U_k).$$

Replacing X by U_i to (4.13) and using (2.12), (3.3), (3.4), (3.7), (3.9)_{1,2} and (3.10), we obtain

(4.21)
$$\sum_{k=1}^{r} u_{k}(Y) A_{N_{k}} U_{i} + \sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} U_{i} - \theta(Y) U_{i}$$

$$+ \theta(U_{i}) \{ \sum_{i=1}^{r} u_{j}(Y) U_{j} + \sum_{a=r+1}^{n} w_{a}(Y) W_{a} \} - A_{N_{i}} Y$$

$$- F(A_{N_{i}} FY) - \sum_{i=1}^{r} \tau_{ij}(FY) U_{j} - \sum_{a=r+1}^{n} \rho_{ia}(FY) W_{a} = 0.$$

Taking the scalar product with V_j to (4.21) and using (3.7), (3.8)₃, (3.9)₁, (4.16)₆ and (4.20), we get

$$h_j^{\ell}(X, U_i) + \delta_{ij}\theta(X) = -\sum_{k=1}^r u_k(X)\overline{g}(A_{N_k}\xi_j, N_i) - \tau_{ij}(FX).$$

Comparing this equation with (4.19), we obtain

$$h_j^{\ell}(X, U_i) + \delta_{ij}\theta(X) = 0, \quad \tau_{ij}(FX) + \sum_{k=1}^r u_k(X)\overline{g}(A_{N_k}\xi_j, N_i) = 0.$$

Replacing X by U_h to the second equation, we get $\overline{g}(A_{N_h}\xi_j,N_i)=0$. Thus,

(4.22)
$$\tau_{ij}(FX) = 0, \qquad h_i^{\ell}(X, U_i) + \delta_{ij}\theta(X) = 0.$$

Taking X = FY to $(4.22)_2$, we obtain

$$h_i^{\ell}(FX, U_i) + \delta_{ij}\theta(FY) = 0.$$

From this equation and (4.18), we see that

(4.23)
$$\tau_{ij}(X) = \sum_{k=1}^{r} u_k(X)\overline{g}(A_{N_k}V_j, N_i).$$

Replacing Y by W_b to (4.21), we have

$$A_N W_a + \theta(W_a)U_i = A_{E_a}U_i + \theta(U_i)W_a.$$

Taking the product with U_i and using (3.4), (3.6), (3.7) and (3.9)₂, we get

$$(4.24) h_i^*(W_a, U_j) = \epsilon_a h_a^s(U_i, U_j) = \epsilon_a h_a^s(U_i, U_i) = h_i^*(U_i, W_a).$$

Taking the scalar product with W_a to (4.21), we have

$$\epsilon_a \rho_{ia}(FY) = -h_i^*(Y, W_a) + \epsilon_a \theta(U_i) w_a(Y)$$

$$+ \sum_{k=1}^r u_k(Y) h_k^*(U_i, W_a) + \sum_{b=r+1}^n \epsilon_b w_b(Y) h_b^s(U_i, W_a).$$

Taking the scalar product with U_i to (4.13) and then, taking $X = W_a$ and using (3.4), (3.6), (3.7), (3.8)₄, (3.9)₂, (3.12) and (4.24), we obtain

$$\epsilon_a \rho_{ia}(FY) = h_i^*(Y, W_a) - \epsilon_a \theta(U_i) w_a(Y)$$
$$- \sum_{k=1}^r u_k(Y) h_k^*(U_i, W_a) - \sum_{b=r+1}^n \epsilon_b w_b(Y) h_b^s(U_i, W_a).$$

Comparing the last two equations, we obtain $\rho_{ia}(FY) = 0$.

5. Indefinite complex space forms

Denote by \overline{R} , R and R^* the curvature tensor of the quarter-symmetric metric connection $\overline{\nabla}$ on \overline{M} , and the curvature tensors of the induced connections ∇ and ∇^* on M and S(TM), respectively. Using the Gauss-Weingarten formulae, we obtain the Gauss equations for M and S(TM), respectively:

$$(5.1) \qquad \overline{R}(X,Y)Z = R(X,Y)Z \\ + \sum_{i=1}^{r} \{h_{i}^{\ell}(X,Z)A_{N_{i}}Y - h_{i}^{\ell}(Y,Z)A_{N_{i}}X\} \\ + \sum_{a=r+1}^{n} \{h_{a}^{s}(X,Z)A_{E_{a}}Y - h_{a}^{s}(Y,Z)A_{E_{a}}X\} \\ + \sum_{i=1}^{r} \{(\nabla_{X}h_{i}^{\ell})(Y,Z) - (\nabla_{Y}h_{i}^{\ell})(X,Z) \\ + \sum_{j=1}^{r} [\tau_{ji}(X)h_{j}^{\ell}(Y,Z) - \tau_{ji}(Y)h_{j}^{\ell}(X,Z)] \\ + \sum_{a=r+1}^{n} [\phi_{ai}(X)h_{a}^{s}(Y,Z) - \phi_{ai}(Y)h_{a}^{s}(X,Z)] \\ - \theta(X)h_{i}^{\ell}(FY,Z) + \theta(Y)h_{i}^{\ell}(FX,Z)\}N_{i} \\ + \sum_{a=r+1}^{n} \{(\nabla_{X}h_{a}^{s})(Y,Z) - (\nabla_{Y}h_{a}^{s})(X,Z) \\ + \sum_{i=1}^{r} [\rho_{ia}(X)h_{i}^{\ell}(Y,Z) - \rho_{ia}(Y)h_{a}^{s}(X,Z)]$$

+
$$\sum_{b=r+1}^{n} [\sigma_{ba}(X)h_{b}^{s}(Y,Z) - \sigma_{ba}(Y)h_{b}^{s}(X,Z)]$$

- $\theta(X)h_{a}^{s}(FY,Z) + \theta(Y)h_{a}^{s}(FX,Z)\}E_{a}$,

(5.2)
$$R(X,Y)PZ = R^{*}(X,Y)PZ + \sum_{i=1}^{r} \{h_{i}^{*}(X,PZ)A_{\xi_{i}}^{*}Y - h_{i}^{*}(Y,PZ)A_{\xi_{i}}^{*}X\},$$

$$+ \sum_{i=1}^{r} \{(\nabla_{X}h_{i}^{*})(Y,PZ) - (\nabla_{Y}h_{i}^{*})(X,PZ) + \sum_{j=1}^{r} [h_{j}^{*}(X,PZ)\tau_{ij}(Y) - h_{j}^{*}(Y,PZ)\tau_{ij}(X)]$$

$$- \theta(X)h_{i}^{*}(FY,PZ) + \theta(Y)h_{i}^{*}(FX,PZ)\}\xi_{i}.$$

Definition. An indefinite complex space form $\overline{M}(c)$ is a connected indefinite Kaehler manifold of constant holomorphic sectional curvature c such that

$$(5.3) \qquad \widetilde{R}(\overline{X}, \overline{Y})\overline{Z} = \frac{c}{4} \{ \overline{g}(\overline{Y}, \overline{Z}) \overline{X} - \overline{g}(\overline{X}, \overline{Z}) \overline{Y} + \overline{g}(J\overline{Y}, \overline{Z}) J \overline{X} - \overline{g}(J\overline{X}, \overline{Z}) J \overline{Y} + 2\overline{g}(\overline{X}, J\overline{Y}) J \overline{Z} \},$$

where \widetilde{R} is the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ on \overline{M} .

By directed calculations from (1.2) and (1.3), we see that

(5.4)
$$\overline{R}(\overline{X}, \overline{Y})\overline{Z} = \widetilde{R}(\overline{X}, \overline{Y})\overline{Z} - \{(\overline{\nabla}_X \theta)(Y) - (\overline{\nabla}_Y \theta)(X) + \theta(Y)\theta(JX) - \theta(X)\theta(JY)\}JZ.$$

Taking the scalar product with ξ_i and N_i to (5.4) by turns and substituting (5.1) and (5.3) into the left-right terms and using (3.8)₄ and (5.2), we get

$$(5.5) \qquad (\nabla_{X}h_{i}^{\ell})(Y,Z) - (\nabla_{Y}h_{i}^{\ell})(X,Z)$$

$$+ \sum_{k=1}^{r} \{\tau_{ki}(X)h_{k}^{\ell}(Y,Z) - \tau_{ki}(Y)h_{k}^{\ell}(X,Z)\}$$

$$+ \sum_{a=r+1}^{n} \{\phi_{ai}(X)h_{a}^{s}(Y,Z) - \phi_{ai}(Y)h_{a}^{s}(X,Z)\}$$

$$- \theta(X)h_{i}^{\ell}(FY,Z) + \theta(Y)h_{i}^{\ell}(FX,Z)$$

$$+ \{(\overline{\nabla}_{X}\theta)(Y) - (\overline{\nabla}_{Y}\theta)(X) + \theta(Y)\theta(JX) - \theta(X)\theta(JY)\}u_{i}(Z)$$

$$= \frac{c}{4}\{u_{i}(X)\overline{g}(JY,Z) - u_{i}(Y)\overline{g}(JX,Z) + 2u_{i}(Z)\overline{g}(X,JY)\},$$

$$(5.6) (\nabla_X h_i^*)(Y, PZ) - (\nabla_Y h_i^*)(X, PZ)$$

$$\begin{split} &+ \sum_{k=1}^{r} \{\tau_{ik}(Y) h_{k}^{*}(X, PZ) - \tau_{ik}(X) h_{k}^{*}(Y, PZ) \} \\ &+ \sum_{k=1}^{r} \{ h_{k}^{\ell}(X, PZ) \eta_{i}(A_{N_{k}}Y) - h_{k}^{\ell}(Y, PZ) \eta_{i}(A_{N_{k}}X) \} \\ &+ \sum_{a=r+1}^{n} \epsilon_{a} \{ \rho_{ia}(Y) h_{a}^{s}(X, PZ) - \rho_{ia}(X) h_{a}^{s}(Y, PZ) \} \\ &- \theta(X) h_{i}^{*}(FY, PZ) + \theta(Y) h_{i}^{*}(FX, PZ) \\ &+ \{ (\overline{\nabla}_{X}\theta)(Y) - (\overline{\nabla}_{Y}\theta)(X) + \theta(Y)\theta(JX) - \theta(X)\theta(JY) \} v_{i}(PZ) \\ &= \frac{c}{4} \{ g(Y, PZ) \eta_{i}(X) - g(X, PZ) \eta_{i}(Y) \\ &+ v_{i}(X) \overline{g}(JY, PZ) - v_{i}(Y) \overline{g}(JX, PZ) + 2 v_{i}(PZ) \overline{g}(X, JY) \}. \end{split}$$

Theorem 5.1. Let M be a generic lightlike submanifold of an indefinite complex space form $\overline{M}(c)$ with a quarter-symmetric metric connection. If one of the following four conditions is satisfied;

- (1) F is recurrent,
- (2) F is Lie recurrent,
- (3) $U_i s$ are parallel with respect to the induced connection ∇ , or
- (4) W_as are parallel with respect to ∇ and $A_{N_i}\xi_i$ belong to S(TM), then c=0 and $\overline{M}(c)$ is flat. Furthermore, in case (3) M is solenoidal.

Proof. (1) By Theorem 4.1, we show that M is solenoidal, i.e., $\eta_j(A_{N_i}X) = 0$ and $\rho_{ia} = 0$, and the equations (4.9) and (4.11) are satisfied. Taking the scalar product with U_i to (4.9)₁ and using (3.7), we obtain

$$h_i^*(X, U_i) = 0.$$

Applying ∇_X to $h_i^*(Y, U_i) = 0$ and using $(4.11)_1$, we obtain

$$(\nabla_X h_i^*)(Y, U_i) = 0.$$

Taking $PZ = U_i$ to (5.6) and using the last two equations, we have

$$\frac{c}{4} \{ v_j(Y) \eta_i(X) - v_j(X) \eta_i(Y) + v_i(Y) \eta_j(X) - v_i(X) \eta_j(Y) \} = 0.$$

Taking $X = \xi_i$ and $Y = V_j$ to this equation, we have c = 0. Thus $\overline{M}(c)$ is flat.

(2) Replacing Y by U_j to (3.3) and using (4.22)₂, we have

$$h_i^{\ell}(U_j, X) = -\theta(U_j)u_i(X).$$

From this equation and (2.10), we obtain

$$h_i^{\ell}(U_i, F(A_{N_j}\xi_j)) = -\theta(U_i)u_i(F(A_{N_j}\xi_j)) = 0.$$

Replacing X by ξ_j and Y by $F(A_{N_i}U_i)$ to (3.3), we obtain

$$h_i^{\ell}(\xi_j, F(A_{N_j}U_i)) = h_i^{\ell}(F(A_{N_j}U_i), \xi_j).$$

Taking $Y = U_j$ to (4.21), we have

$$A_{\scriptscriptstyle N_i}U_i + \theta(U_i)U_j = A_{\scriptscriptstyle N_i}U_j + \theta(U_j)U_i.$$

Applying F to this equation, we get $F(A_{N_j}U_i) = F(A_{N_i}U_j)$. Thus $F(A_{N_j}U_i)$ is symmetric with respect to i and j. From this result and $(3.8)_1$, we obtain

$$h_i^{\ell}(\xi_j, F(A_{N_i}U_i)) = h_i^{\ell}(F(A_{N_i}U_i), \xi_j) = 0.$$

By Theorem 4.2, the equations (4.16), (4.21) and (4.22) are satisfied. Applying ∇_X to $h_i^{\ell}(Y, U_j) = -\delta_{ij}\theta(Y)$ and using (2.3) and (3.10), we have

$$(\nabla_X h_i^{\ell})(Y, U_j)$$

$$= -\delta_{ij} \{ (\overline{\nabla}_X \theta)(Y) + \sum_{k=1}^r \beta_k h_k^{\ell}(X, Y) + \sum_{a=r+1}^n \gamma_a h_a^s(X, Y) \}$$
$$- h_i^{\ell}(Y, F(A_{N_j} X)) + \theta(Y) \tau_{ji}(X) - \sum_{a=r+1}^n \rho_{ja}(X) h_i^{\ell}(Y, W_a).$$

Substituting this equation and $(4.22)_2$ into (5.5) such that $Z = U_j$ and using (2.11), $(3.2)\sim(3.4)$, $(3.9)_4$ and (3.10), we get

$$\begin{split} h_i^{\ell}(X, F(A_{N_j}Y)) - h_i^{\ell}(Y, F(A_{N_j}X)) \\ + \sum_{a=r+1}^n \epsilon_a \{ \rho_{ja}(Y) h_a^s(X, V_i) - \rho_{ja}(X) h_a^s(Y, V_i) \} \\ + \sum_{a=r+1}^n \{ \phi_{ai}(X) h_a^s(Y, U_j) - \phi_{ai}(Y) h_a^s(X, U_j) \} \\ = \frac{c}{4} \{ u_i(Y) \eta_j(X) - u_i(X) \eta_j(Y) + 2 \delta_{ij} \overline{g}(X, JY) \}. \end{split}$$

Taking $Y = U_i$ and $X = \xi_i$ and using (3.4), (3.8)₂ and (4.16)_{1,3,4,5}, we get

(5.7)
$$h_i^{\ell}(U_i, F(A_{N_i}\xi_j)) - h_i^{\ell}(\xi_j, F(A_{N_i}U_i)) = \frac{3}{4}c.$$

From the above results and (5.7), we have c = 0. Thus $\overline{M}(c)$ is flat.

(3) If U_i is parallel with respect to ∇ , then, taking the scalar product with U_j , W_a and N_j to (3.10) with $\nabla_X U_i = 0$ by turns, we get respectively

(5.8)
$$\eta_j(A_{N_i}X) = 0, \qquad \rho_{ia} = 0, \qquad h_i^*(X, U_j) = 0.$$

From (4.2) and $(5.8)_{1,2}$, we see that M is solenoidal.

Applying ∇_X to $h_i^*(Y, U_j) = 0$ and using the fact that $\nabla_X U_j = 0$, we have $(\nabla_X h_i^*)(Y, U_j) = 0$.

Substituting (5.8) and the last equation into (5.6) with $PZ = U_i$, we obtain

$$\frac{c}{4}\{v_j(Y)\eta_i(X) - v_j(X)\eta_i(Y) + v_i(Y)\eta_j(X) - v_i(X)\eta_j(Y)\} = 0.$$

Taking $X = \xi_i$ and $Y = V_j$ to this equation, we have c = 0. Thus $\overline{M}(c)$ is flat.

(4) If W_a is parallel with respect to ∇ , then, taking the scalar product with V_i , U_i and N_i to (3.12) with $\nabla_X W_a = 0$ by turns, we get respectively

(5.9)
$$\phi_{ai} = 0, \qquad \rho_{ia} = 0, \qquad h_i^*(X, W_a) = 0.$$

Applying ∇_X to $h_i^*(Y, W_a) = 0$ and using the fact that $\nabla_X W_a = 0$, we have

$$(\nabla_X h_i^*)(Y, W_a) = 0.$$

Substituting this equation and (5.9) into (5.6) with $PZ = W_a$, we get

$$\sum_{k=1}^{r} \{h_a^s(X, V_k)\eta_i(A_{N_k}Y) - h_a^s(Y, V_k)\eta_i(A_{N_k}X)\}$$

$$= \frac{c}{4} \{w_a(Y)\eta_i(X) - w_a(X)\eta_i(Y)\}.$$

Taking $X = \xi_i$ and $Y = W_a$ and using (3.4) and (3.8)_{2,3}, we obtain

$$h_a^s(W_a, V_k)\eta_k(A_{N_i}\xi_i) = \frac{c}{4}.$$

Assume that $A_{N_i}\xi_i$ belong to S(TM). Then we have c=0.

Definition. The lightlike submanifold M is called *screen totally umbilical* [2] if there exist smooth functions γ_i on a coordinate neighborhood \mathcal{U} such that

$$(5.10) h_i^*(X, PY) = \gamma_i g(X, Y).$$

Theorem 5.2. Let M be a screen totally umbilical generic lightlike submanifold of an indefinite complex space form $\overline{M}(c)$ with a quarter-symmetric metric connection. If M is irrotational or solenoidal, then $\overline{M}(c)$ is flat.

Proof. From $(3.9)_{1,2}$ and (5.10), we have

$$h_i^{\ell}(X, U_i) = \gamma_i u_j(X), \qquad h_a^{s}(X, U_i) = \gamma_i w_a(X).$$

Taking $X = \xi_k$ to these two equations, we obtain

(5.11)
$$h_i^{\ell}(\xi_k, U_i) = 0, \qquad h_a^{s}(\xi_k, U_i) = 0.$$

Taking $X = \xi_k$ and $Y = U_i$ to (3.3) and (3.4) and using (5.11)_{1,2}, we have

$$h_i^{\ell}(U_i, \xi_k) = \delta_{ij}\alpha_k, \qquad h_a^{s}(U_i, \xi_k) = 0.$$

Taking j = k to the first equation and using $(3.8)_6$, we get $\alpha_i = 0$ for all i. Applying ∇_Z to (5.10) and using (3.1), we obtain

$$(\nabla_X h_i^*)(Y, PZ) = (X\gamma_i)g(Y, PZ) + \sum_{k=1}^r \gamma_i h_k^{\ell}(X, PZ)\eta_k(Y).$$

Substituting the last equation into (5.6), we have

$$\{X\gamma_i - \sum_{k=1}^r \gamma_k \tau_{ik}(X)\}g(Y, PZ) - \{Y\gamma_i - \sum_{k=1}^r \gamma_k \tau_{ik}(Y)\}g(X, PZ)$$

$$\begin{split} &+\gamma_i\{\sum_{k=1}^r[h_k^\ell(X,PZ)\eta_k(Y)-h_k^\ell(Y,PZ)\eta_k(X)]\\ &+g(FX,PZ)\theta(Y)-g(FY,PZ)\theta(X)\}\\ &+\sum_{a=r+1}^n\epsilon_a\{\rho_{ia}(Y)h_a^s(X,PZ)-\rho_{ia}(X)h_a^s(Y,PZ)\}\\ &+\sum_{k=1}^r\{h_k^\ell(X,PZ)\eta_i(A_{N_k}Y)-h_k^\ell(Y,PZ)\eta_i(A_{N_k}X)\}\\ &+\{(\overline{\nabla}_X\theta)(Y)-(\overline{\nabla}_Y\theta)(X)+\theta(Y)\theta(JX)-\theta(X)\theta(JY)\}v_i(PZ)\\ &=\frac{c}{4}\{g(Y,PZ)\eta_i(X)-g(X,PZ)\eta_i(Y)\\ &+v_i(X)\overline{g}(JY,PZ)-v_i(Y)\overline{g}(JX,PZ)+2v_i(PZ)\overline{g}(X,JY)\}. \end{split}$$
 Taking $X=V_i,Y=U_j$ and $PZ=\xi_j$ and using (5.11), we obtain

$$\sum_{k=1}^{r} \left\{ h_k^{\ell}(V_i, \xi_j) \eta_i(A_{N_k} U_j) - \sum_{a=r+1}^{n} \rho_{ia}(U_j) \phi_{aj}(V_i) \right\} = \frac{c}{4}.$$

Therefore, if M is irrotational or solenoidal, then $\overline{M}(c)$ is flat.

References

- [1] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comment. Math. Helv. **26** (1952), 328–344.
- [2] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- K. L. Duggal and D. H. Jin, Generic lightlike submanifolds of an indefinite Sasakian manifold, Int. Electron. J. Geom. 5 (2012), no. 1, 108–119.
- D. H. Jin, Indefinite generalized Sasakian space form admitting a generic lightlike submanifold, Bull. Korean Math. Soc. 51 (2014), no. 6, 1711–1726.
- __, Generic lightlike submanifolds of an indefinite trans-Sasakian manifold of a quasi-constant curvature, Appl. Math. Sci. 9 (2015), no. 60, 2985–2997.
- _, Lightlike hypersurfaces of an indefinite Kaehler manifold with a quartersymmetric metric connection, Bull. Korean Math. Soc. 52 (2015), no. 1, 201-213.
- ___, Lightlike hypersurfaces of a trans-Sasakian manifold with a quarter-symmetric metric connection, Appl. Math. Sci. 9 (2015), no. 28, 1393-1406.
- _____, Geometry of lightlike hypersurface of an indefinite Kaehler manifold with a quarter-symmetric metric connection, Appl. Math. Sci. 10 (2016), no. 6, 289–299.
- _____, Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat 30 (2016), no. 7, 1919–1930.
- , Generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection, Bull. Korean Math. Soc. 54 (2017), no. 3, 1003-
- [11] D. H. Jin and J. W. Lee, Generic lightlike submanifolds of an indefinite cosymplectic $manifold, \ {\rm Math.\ Probl.\ Eng.\ \bf 2011\ (2011),\ Art\ ID\ 610986,\ 1-16.}$
- _____, A semi-Riemannian manifold of quasi-constant curvature admits lightlike submanifolds, Int. J. Math. Anal. 9 (2015), no. 25, 1215–1229.
- D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.

[14] K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor (N.S.) $\bf 38$ (1982), 13–18.

Dae Ho Jin Department of Mathematics Dongguk University Kyongju 780-714, Korea E-mail address: jindh@dongguk.ac.kr