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OPTIMAL CONTROL ON SEMILINEAR RETARDED

STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS

DRIVEN BY POISSON JUMPS IN HILBERT SPACE

Durga Nagarajan and Muthukumar Palanisamy

Abstract. This paper deals with an optimal control on semilinear sto-
chastic functional differential equations with Poisson jumps in a Hilbert

space. The existence of an optimal control is derived by the solution of

proposed system which satisfies weakly sequentially compactness. Also
the stochastic maximum principle for the optimal control is established

by using spike variation technique of optimal control with a convex con-
trol domain in Hilbert space. Finally, an application of retarded type

stochastic Burgers equation is given to illustrate the theory.

1. Introduction

In the last decades, many processes in industrial practices have stochastic
characterisation and the system have to be modelled in the form of stochastic
differential equations (SDEs for short). SDEs have attracted with great interest
because of their practical applications in many fields such as mechanical, elec-
trical, control engineering, etc. [2, 6, 12, 14, 18, 25]. Nowadays, more literatures
drawn towards the optimal control problem (OCP for short) for discontinuous
stochastic systems or stochastic systems with random jumps. For instance,
the price dynamics of financial instruments exhibits jumps which can be ad-
equately captured solely by the process satisfying Ito-type SDEs (see [5, 22]).
Jumps constitute a key tool in the description of credit risk sensitive instru-
ments. Hence dynamic models that involves random jumps become popular
in finance and it is of great interest to find whether the stochastic maximum
principle holds also for the pure jump type processes which have been studied
in the literatures: Peng [16] first investigated the stochastic maximum principle
where the control domain is convex. Shi [20] studied the necessary conditions
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2 D. NAGARAJAN AND M. PALANISAMY

for optimal control of forward backward stochastic systems driven by random
jumps with the convex control domain. Recently, Yong [27] derived the prob-
lem of finding the maximum principle for the optimal control problem of SDEs
in the nonconvex control domain. Also Yong and Zhou [28] obtained maximum
principle for the SDEs and control variable occurred in diffusion coefficient with
the control domain is nonconvex. The retarded or delayed system makes more
complicated to deal with the system not only for infinite dimensional case but
also in the presence of noise and jumps. The stochastic maximum principle
for OCPs of delay systems involving continuous and impulse controls in finite
dimensional space are discussed in [29]. OCPs modelled by stochastic delay
differential equations and its applications are studied in [19].

The occurrence of Poisson jumps leads to a new and crucial phenomena
which have applications in the shot-noise processes that are used to modelled
the Catastrophe insurance and network self-interface in an ad hoc network (see
[8]). The optimal control and maximum principle of SDEs with jumps in in-
finite dimensional spaces are few (see [1, 9, 13, 15, 24, 30, 31]) and it is worth
emphasizing that the presence of noise (stochastic) term and perturbation in
the dynamical models that often leads to qualitatively new types of behaviour
of the processes [26]. Zhou [31] derived the infinite horizon OCP in which
the controlled state dynamics is governed by a stochastic evolution equations
in Hilbert space and a cost functional contains a quadratic growth. In [30],
authors studied the OCP for stochastic evolution equations in Hilbert space.
Maximum principle for controlled stochastic evolution equations are focussed
in [1]. From the above motivation, to the best of authors knowledge there is
no work in the literature for a retarded SDEs driven by Brownian motion and
compensated Poisson random measure. Our contribution in this paper is to
derive the stochastic maximum principle for the optimal control of retarded
SDEs with Poisson jumps in infinite dimensional spaces. Moreover, the exis-
tence of the optimal control for the proposed system are also studied. Here the
control domain is assumed to be convex and we derive the stochastic maximum
principle by the virtue of spike variation technique.

Throughout this paper, let H be a complex Hilbert space and V be another
Hilbert space as a dense subspace such that V ⊂ H ⊂ V ∗ by identifying
the anti-dual of H with H, where V ∗ is the dual space of V . Therefore, the
corresponding norms satisfies the following:

‖p‖∗ ≤ ‖p‖ ≤ ‖p‖V ∀p ∈ V,

where the notations ‖ · ‖, ‖ · ‖V and ‖ · ‖∗ denote the norms of H, V and V ∗,
respectively, as usual.

In this paper, the optimal control study of the semilinear retarded stochastic
functional differential equation with Poisson jumps as follows:
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 3

(1.1)

dx(t) =[A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ f(t, x(t)) + q(t)]dt

+ g(t, x(t))dw(t)+

∫
Z

e(t, x(t), η)Ñ(dt, dη), t ∈ J := [0, T ],

x(0) =φ0, x(s) = φ1(s), d− h ≤ s < 0,

where the state variables x(·) takes the values in the Hilbert space H, A0 be
the bounded linear operator associated with a sesquilinear form defined on the
Hilbert space V × V satisfying Garding’s inequality. The operator A1 is a
bounded linear operator from V to V ∗. The function a(·) is assumed to be real
valued and Holder continuous in [−h, 0]. That is, for every s, t ∈ [−h, 0]

(1.2) |a(s)− a(t)| ≤ |s− t|ρ

for 0 < ρ < 1. The history values x(t + s),−h ≤ s < 0 are L2([−h, 0];H)-
valued stochastic processes. Let (Ω,Ft,P) be a complete probability space.
Let K be another separable Hilbert space and suppose that {w(t) : t ≥ 0}
be a K-valued Brownian motion or Wiener process with a finite trace nuclear
covariance operator Q ≥ 0. We are employing the same notations ‖ · ‖ for the
norm of L(K,H), where L(K,H) denotes the space of all bounded operators
from K into H. Simply as L(K,H) = L(H) if K = H [21]. Let N(dt, dη) be
the Poisson counting measure induced by the Poisson point process r(t) defined
on the complete probability space (Ω,Ft,P).

Let b : J × V → H be a nonlinear mapping, we assume that there exists a
constant l1 > 0 such that t 7→ b(t, x) is measurable and

(1.3) ‖b(t, x)− b(t, y)‖2 ≤ l1‖x− y‖2, b(t, 0) = 0,

for all x, y ∈ V . For x ∈ L2(J,Ft;V ) and k ∈ L2(0, T ). We set

f(t, x) =

∫ t

0

k(t− s)b(s, x(s))ds,

and g : J×V → LQ(K,H), e : J×V ×Z → H are Borel measurable functions,
where LQ(K,H) denotes the space of all Q-Hilbert-Schmidt operators from K
into H.

The layout of the present paper is as follows. Section 2 gives some basics and
the preliminary results. Section 3 describes the existence of an optimal con-
trol by utilizing weakly sequentially compactness and the stochastic maximum
principle. In Section 4, an application is provided to illustrate the theory.

2. Preliminaries

In order to prove the main results, the following notations are used:
Let A0 be the operator associated with a bounded sesquilinear form ζ(p, v)

which is defined by Garding’s inequality

Re ζ(p, p) ≥ c‖p‖2 − c0|p|2, c > 0, c0 ≥ 0
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4 D. NAGARAJAN AND M. PALANISAMY

that is,

(A0p, v) = −ζ(u, p), p, v ∈ V,

where (·, ·) denotes the duality pairing between V and V ∗. Then A0 is a
bounded linear operator from V to V ∗, and its realization in H which is the
restriction of A0 to D(A0) = {p ∈ V ;A0(p) ∈ H} is denoted by A0. Here we
note that D(A0) is dense in V . Therefore it is also dense in H. It is known
that A0 generates an analytic semigroup in both H and V ∗ (refer [9]). Define
Wm,p(0, T ;V ∗) the Sobolev space of V ∗-valued functions on [0,T] whose dis-
tributional derivatives up to m belonging to Lp(0, T ;V ∗). Let (Ω,Ft,P) be a
complete probability space equipped with a normal filtration Ft, t ∈ J . An
H-valued random variable is an Ft-measurable function x(t) : Ω → H and
a collection of random variable S := {x(t, ω) : Ω → H : t ∈ J} is called a
stochastic process. We write x(t) instead of x(t, ω) and x(t) : J → H in the
place of S. Let βn(t) (n = 1, 2, . . .) be a sequence of real valued one dimen-
sional Ft-adapted Brownian motions mutually independent over (Ω,Ft,P). Set
w(t) =

∑∞
n=1

√
λnβn(t)en, t ≥ 0, where λn ≥ 0 (n = 1, 2, . . .) are non-negative

real numbers and {en} (n = 1, 2, . . .) is the complete orthonormal basis in K.
Let Q ∈ L(K,K) be an operator defined by Qen = λnen with finite Tr(Q)=∑∞
n=1 λn <∞, where Tr denotes the Trace of the operator. Then the above K-

valued stochastic process w(t) is called a Q-Wiener process. Let ψ ∈ L(K,H)
and define

‖ψ‖2Q = Tr(ψQψ∗) =

∞∑
n=1

‖
√
λnψen‖2.

If ‖ψ‖Q < ∞, then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H)
be the space of all Q-Hilbert-Schmidt operators ψ : K → H. The completion
LQ(K,H) of L(K,H) with respect to the topology induced by the norm ‖ · ‖Q,
with ‖ψ‖2Q = 〈ψ,ψ〉 is a Hilbert space with the above norm topology [21]. The
collection of all Ft-measurable, square integrable H-valued random variables
denoted by L2(Ω,Ft,P;H) = L2(Ω,Ft;H) is a Banach space equipped with
the norm:

‖x‖2L2 = sup
t∈[0,T ]

E‖x(t)‖2,

where E denotes the mathematical expectation operator of the stochastic pro-
cess with respect to the given probability measure P. Now, L(V, V ∗) is the space
of all linear bounded operators from the space V to V ∗. Let Uad = L2

Ft
(J ;Y ) be

the set of all admissible controls. Let r(t) be the stationary Ft-adapted Poisson
point process with a characteristic measure λ in the measurable space (Z,B(Z))
and N(dt, dη) is the Poisson counting measure associated with r(t) and the

compensated martingale measure denoted by Ñ(dt, dη) = N(dt, dη)− λ(dη)dt
that is independent of the Brownian motion (see [4,15,23]). Now, consider the
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 5

linear retarded functional differential equation associated with (1.1):

dx(t) =[A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ q(t)]dt,

x(0) =φ0, x(s) = φ1(s), −h ≤ s < 0.

(2.1)

Let W (·) be the fundamental solution of the linear homogeneous equation as-
sociated with (2.1) which is the operator valued function satisfying,

W (t) = S(t) +

∫ t

0

S(t− s)
∫ 0

−h
a(τ)A1W (s+ τ)dτds, t > 0

W (0) = I, W (s) = 0, −h ≤ s < 0,

(2.2)

where S(·) is the semigroup generated by A0. Then, x(t) satisfies the integral
equation,

x(t) = W (t)φ0 +

∫ 0

−h
Ut(s)φ

1(s)ds+

∫ t

0

W (t− s)q(s)ds,

Ut(s) =

∫ s

−h
W (t− s+ σ)a(σ)A1dσ.

By the virtue of Theorem 3.3 in [7], we have the following result on the linear
equation(2.1).

Proposition 2.1. (i) Let F = (D(A0), H) 1
2 ,2

where (D(A0), H) 1
2 ,2

denote the

real interpolation space between D(A0) and H. Let (φ0, φ1) ∈ F ×L2(−h, 0,Ft;
D(A0)) and q ∈ L2(J,Ft;H), T > 0. Then, there exists a unique solution x of
(2.1) belonging to

W0(T ) ≡ L2(−h, 0,Ft;D(A0)) ∩W 1,2(0, T,Ft;H) ⊂ C([0, T ];F ),

and satisfying,

(2.3) E‖x‖2W0(T ) ≤ C1

[
E‖φ0‖2F + E‖φ1‖2L2(−h,0,Ft;D(A0))

+ E‖q‖2L2(J,Ft;H)

]
,

where C1 is a constant depending on T.
(ii) Let (φ0, φ1) ∈ H × L2(−h, 0,Ft;V ) and q ∈ L2(J,Ft;V

∗), T > 0. Then
there exists a unique solution x of (2.1) belonging to

W1(T ) ≡ L2(−h, T,Ft;V ) ∩W 1,2(0, T,Ft;V
∗) ⊂ C([0, T ];H)

and satisfying,

(2.4) E‖x‖2W1(T ) ≤ C1

[
E|φ0|2 + E‖φ1‖2L2(−h,0,Ft;V ) + E‖q‖2L2(J,Ft;V ∗)

]
,

where C1 is a constant depending on T.

Lemma 2.2. Let x ∈ L2(J,Ft;V ), T > 0. Then f(·, x) ∈ L2(J,Ft;H) and

E‖f(·, x)‖2L2(J,Ft;H) ≤ l
2
1‖k‖2L2(0,T )T‖x‖

2
L2(J,Ft;V ).
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6 D. NAGARAJAN AND M. PALANISAMY

Moreover, if x1, x2 ∈ L2(J,Ft;V ), then

E‖f(·, x1)− f(·, x2)‖2L2(J,Ft;H) ≤ l
2
1‖k‖2L2(0,T )T‖x1 − x2‖

2
L2(J,Ft;V ).

Proof. Let x ∈ L2(J,Ft;V ) T > 0 and since f : J × V → H, f(·, x) ∈
L2(J,Ft;H). Now by using (1.3) and the Holder inequality we get,

E‖f(·, x)‖2L2(J,Ft;H) ≤
∫ T

0

E
∥∥∥∫ t

0

k(t− s)b(s, x(s))ds
∥∥∥2dt(2.5)

≤ ‖k‖2L2(0,T )

∫ T

0

E
∫ t

0

l21‖x(s)‖2dsdt

≤ l21‖k‖2L2(0,T )

∫ T

0

∫ t

0

E‖x(s)‖2dsdt

≤ T l21‖k‖2L2(0,T )

[
sup
s∈J

E‖x(s)‖2
]

= T l21‖k‖2L2(0,T )‖x‖
2
L2(J,Ft;V ).

Now consider,

E‖f(·, x1)− f(·, x2)‖2L2(J,Ft;H) ≤ ‖k‖
2
L2(0,T )

∫ T

0

E
∫ t

0

l21‖x1(s)− x2(s)‖2dsdt

≤ l21‖k‖2L2(0,T )

∫ T

0

∫ t

0

E‖x1(s)− x2(s)‖2dsdt

≤ T l21‖k‖2L2(0,T )

[
sup

s∈J:=[0,T ]

E‖x1(s)− x2(s)‖2
]

= T l21‖k‖2L2(0,T )‖x1 − x2‖
2
L2(J,Ft;V ). �

In the virtue of Lemma 2.2, using maximal regularity for more general retarded
parabolic system from Theorem 3.1 in [10] we establish for the following result
on the solvability of (1.1).

Proposition 2.3. Suppose that the inequality (1.3) is satisfied. Then for any
(φ0, φ1) ∈ H × L2(−h, 0,Ft;V ) and q ∈ L2(J,Ft;V

∗), T > 0 the solution x of
(1.1) exists and is unique in L2(−h, T,Ft;V ) ∩W 1,2(0, T,Ft;V

∗) and satisfies
for a constant C2 depending on T such that,

(2.6)
E‖x‖2L2(−h,T,Ft;V )∩W 1,2(0,T,Ft;V ∗)

≤ C2

[
1 + E|φ0|2H + E‖φ1‖2L2(−h,0,Ft;V ) + E‖q‖2L2(J,Ft;V ∗)

]
.

Lemma 2.4 (see [6]). Let G : J × Ω → LQ(K,H) be a strongly measurable

mapping such that
∫ T
0
E‖G(t)‖2LQ(K,H)dt <∞. Then

E
∥∥∥∫ t

0

G(s)dw(s)
∥∥∥2 ≤ LG ∫ t

0

E‖G(s)‖2ds ∀ t ∈ J,(2.7)

where LG is a constant involving T .
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 7

3. Main results

In this section, we will show that there exists an optimal control for the
proposed system and also the stochastic maximum principle.

Assume that D(A0) ⊂ V is compact. Now consider the nonlinear stochastic
control system corresponding to (1.1) with all its assumptions defined in Sec.
1 as follows:

dx(t) = [A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ f(t, x(t)) +Bu(t)]dt

+ g(t, x(t))dw(t) +

∫
Z

e(t, x(t), η)Ñ(dt, dη), t ∈ J.

x(0) = φ0, x(s) = φ1(s), −h ≤ s < 0,

(3.1)

The control space will be modelled by a Banach space Y . Let the controller
B is a bounded linear operator from Y to H. Choose a bounded subset U
of Y and we say that U is a control set. Suppose that an admissible control
u ∈ L2

Ft
(J ;Y ) is Ft-measurable, square integrable Y -valued random variable

satisfying u(t) ∈ U for almost all t. Let x(t;u) be a solution of (3.1) associated
with the nonlinear functions f, g and e and a control u at the time t. The
solution x(t;u) of (3.1) for each admissible control u is called a trajectory
corresponding to u. We need the following hypotheses.

(H1) The nonlinear functions g and e satisfies the Lipschitz condition, there
exists a positive constants Mg,Me > 0 such that

‖g(s, x1(s))− g(s, x2(s))‖2 ≤Mg‖x1 − x2‖2 ∀x1 , x2 ∈ L2(J,Ft;V )∫
Z

‖e(s, x1(s), η)−e(s, x2(s), η)‖2λ(dη) ≤Me‖x1−x2‖2 ∀x1, x2∈L2(J,Ft;V ).

(H2) We assume that W (t) is uniformly bounded. That is there is a constant
M > 0 such that

‖W (t)‖2 ≤M ∀t > 0.

(H3) For our convenience, take l2 = ‖B‖2.

Let F ,B,G and E be the Nemitsky operators corresponding to the mappings
f,B, g and e, which are defined by,

(Fu)(·) = f(·, xu(·)), (Bu)(·) = Bu(·),
(Gu)(·) = g(·, xu(·)), and (Eu, η)(·) = e(·, xu(·), η) respectively.

Then, the solution of (3.1) can be written as (see [9, 17])

x(t;u) = x(t;φ) +

∫ t

0

W (t− s){f(s, x(s)) +Bu(s)}ds

+

∫ t

0

W (t− s)g(s, x(s))dw(s)+

∫ t

0

W (t− s)
∫
Z

e(s, x(s), η)Ñ(dt, dη)
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8 D. NAGARAJAN AND M. PALANISAMY

= x(t;φ) +

∫ t

0

W (t− s)((F + B)u)(s)ds

+

∫ t

0

W (t− s)(Gu)(s)dw(s) +

∫ t

0

W (t− s)
∫
Z

(Eu, η)(s)Ñ(dt, dη),

where

x(t;φ) = W (t)φ0 +

∫ 0

−h
Ut(s)φ

1(s)ds.

Let Z be a real Hilbert space. Let C(t) be a bounded function from H to Z
for each t and be continuous in t ∈ J . Let y ∈ L2(J,Ft;Z). Suppose that there
exists no admissible control which satisfies C(t)x(t;u) = y(t) for almost all t.
Then, we define the cost function as follows:

J (u) = E
[1

2

∫ T

0

‖C(t)x(t;u)− y(t)‖2dt
]
.(3.2)

Let u ∈ L2
Ft

(J ;Y ). Then, it is well known that

(3.3) lim
h→0

h−1E
∫ h

0

‖u(t+ s)− u(t)‖Y ds = 0

for almost all points of t ∈ [0, T ].

Remark 3.1. The point t, which permits (3.3) to hold, is called a Lebesgue
point of u.

Lemma 3.2. If the hypotheses (H1)-(H3) and Lemma 2.4 holds. Let xu be
the solution of (1.1) corresponding to u. Then the mapping u 7→ xu is compact
from L2

Ft
(J ;Y ) to L2(J,Ft;V ).

Proof. We define the solution mapping S from L2
Ft

(J ;Y ) to L2(J,Ft;V ) by

(Su)(t) = xu(t), where u ∈ L2
Ft

(J ;Y ).

Using equations (2.3), (2.6) and Lemma 2.2, we have that,

E‖Su‖2L2(J,Ft;D(A0))∩W 1,2(J,Ft;H) = E‖xu‖2L2(J,Ft;D(A0))∩W 1,2(J,Ft;H)

≤ C1

[
E‖φ0‖2F + E‖φ1‖2L2(J,Ft;D(A0))

+
{
E‖(F + B)u‖2L2(J,Ft;H)

+ LgE‖Gu‖2L2(J,Ft;H) + E
∫
Z

‖(Eu, η)‖2L2(J,Ft;H)λ(dη)
}]

≤ C1

[
E‖φ0‖2F + E‖φ1‖2L2(J,Ft;D(A0))

+ [l21‖k‖2L2(0,T )T‖x‖
2
L2(J,Ft;V )]

+ ‖B‖2E‖u‖2L2
Ft

(J;Y ) + LgMg‖x‖2L2(J,Ft;V ) +Me‖x‖2L2(J,Ft;V )

]
≤ C1

[
E‖φ0‖2F + E‖φ1‖2L2(J,Ft;D(A0))

+
{
l21‖k‖2L2(0,T )T + LgMg +Me

}
‖x‖2L2(J,Ft;V ) + ‖B‖2E‖u‖2L2

Ft
(J;Y )

]
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 9

≤ C1

[
E‖φ0‖2F + E‖φ1‖2L2(J,Ft;D(A0))

+
{
l21‖k‖2L2(0,T )T + LgMg +Me

}(
C2[1 + E‖φ0‖2H

+ E‖φ1‖2L2(−h,0,Ft;V ) + ‖B‖2E‖u‖2L2
Ft

(J;Y )]
)

+ ‖B‖2E‖u‖2L2
Ft

(J;Y )

]
.

Hence, if u is bounded in L2
Ft

(J ;Y ), then so is xu in L2(J,Ft;D(A0))∩W 1,2(J ,
Ft;H). Noting that D(A0) is compactly embedded in V, the embedding

L2(J,Ft;D(A0)) ∩W 1,2(J,Ft;H) ⊂ L2(J,Ft;V )

is also compact in the view of Theorem 2 of Aubin [3]. Hence the mapping
u 7→ Su = xu is compact from L2

Ft
(J ;Y ) to L2(J,Ft;V ). �

Theorem 3.3. Let U be a bounded closed convex subset of Y . All the hypothe-
ses of Lemma 3.2 are satisfied then there exist an optimal control for the cost
function (3.2).

Proof. Let {un} in U be a minimizing sequence of L2
Ft

(J ;Y ) such that

inf
u∈U
J (u) = lim

n→∞
J (un).

Since U is bounded and weakly closed, then there exists a subsequence denoted
by {un} again and there exists a û ∈ U such that

un → û weakly in L2
Ft

(J ;Y ).(3.4)

Since U is a closed convex subset of Y and by using Mazur’s theorem as an
important consequence of the Hahn-Banach theorem, there exist a f0 ∈ Y ∗ and
c ∈ (−∞,∞) such that f0(u) ≤ c ∀u ∈ U . Thus û is admissible. Let s be a
Lebesgue point of û and put

ωε,n =
1

ε

∫ s+ε

s

un(t)dt,

for each t > 0 and n. Then, f0(ωε,n) ≤ c and we have (3.4),

ωε,n → ωε =
1

ε

∫ s+ε

s

û(t)dt weakly as n→∞.

By letting ε → 0, it holds that ωε → û(s) and f0(û) ≤ c, so that û(s) ∈ U .
Also we have,

xn(t) = x(t;φ) +

∫ t

0

W (t− s)((F + B)un)(s)ds

+

∫ t

0

W (t− s)(Gun)(s)dw(s) +

∫ t

0

W (t− s)
∫
Z

(Eun, η)(s)Ñ(dt, dη),

where

x(t;φ) = W (t)φ0 +

∫ 0

−h
Ut(s)φ

1(s)ds,
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it follows from the Proposition 2.3 that {xn(t)} is bounded. By applying
the Eberlein-Smulian theorem we obtain {xn(t)} is weakly sequentially com-
pact. From (1.3) and Lemma 3.2, we say that F is a compact operator
from L2

Ft
(J ;Y ) to L2(J,Ft;H) and hence it holds Fun → F û strongly in

L2(J,Ft;H). Similarly, B, G, E and W (t) are strongly continuous on J , then
Bun → Bû, Gun → Gû, E(un, η) → E(û, η) strongly in L2(J,Ft;H). Then,
we have that

xn(t)→ x(t; û) weakly in H,

where

x(t; û) = x(t;φ) +

∫ t

0

W (t− s)((F + B)û)(s)ds

+

∫ t

0

W (t− s)(Gû)(s)dw(s) +

∫ t

0

W (t− s)
∫
Z

(E û, η)(s)Ñ(dt, dη).

Hence, we have that

inf J (u) ≤ J (û) ≤ lim
n→∞

inf J (un) = inf J (u).

Hence, this û is an optimal control. �

Theorem 3.4. Let the hypotheses (H1)-(H3) and (1.3) be satisfied and let û
be an optimal control. Then the equality

max
v∈U

E〈v,B∗z(s)〉 = E〈û(s), B∗z(s)〉

holds, where

z(s) =

∫ T

s

W ∗(t− s)C∗(t){y(t)− C(t)x(t; û)}dt.

Here, z(s) satisfies the following transposed system (see the details in [9, 11]):

z′(t)+A∗0z(t)+

∫ 0

−h
a(s)A∗1z(t− s)ds+C∗(t){y(t)−C(t)x(t; û)} = 0 a.e ∀t ∈ J.

(3.5)

z(T ) = 0, z(s) = 0 a.e s ∈ (T, T + h],

in the weak sense.

Proof. Let û be an optimal control and let x̂(t) = x(t; û). For ε > 0, choose
v ∈ L2

Ft
(J ;U) so that E‖û − v‖2

L2
Ft

(J;U)
< ε. Let t0 be a Lebesgue point of û

and v.
For t0 < t0 + ε < T . Put

(3.6) u(t) =

{
v if t0 < t < t0 + ε

û otherwise.

Then, u is an admissible control. Let x(t) = x(t;u). Then

E‖x(t)− x̂(t)‖2 = E‖x(t)− x(t)‖2 = 0
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 11

for 0 ≤ t ≤ t0, since û(t) = u(t) for 0 ≤ t ≤ t0.
Now, if t0 ≤ t ≤ T , then

E‖x(t)− x̂(t)‖2

= E
∥∥∥∫ t0+ε

t0

W (t− s)
{

[f(s, x(s))− f(s, x̂(s))] +B(v − û(s))
}
ds

+

∫ t0+ε

t0

W (t− s)[g(s, x(s))− g(s, x̂(s))]dw(s)

+

∫ t0+ε

t0

W (t− s)
∫
Z

[e(s, x(s), η)− e(s, x̂(s), η)]Ñ(ds, dη)
∥∥∥2.(3.7)

If t0 < t < t0 + ε, then

E‖x(t)− x̂(t)‖2 = E
∥∥∥∫ t

t0

W (t− s)
{

[f(s, x(s))− f(s, x̂(s))] +B(v − û(s))
}
ds

+

∫ t

t0

W (t− s)[g(s, x(s))− g(s, x̂(s))]dw(s)

+

∫ t

t0

W (t− s)
∫
Z

[e(s, x(s), η)− e(s, x̂(s), η)]Ñ(ds, dη)
∥∥∥2.(3.8)

Let t0 ≤ t ≤ T . Let us put

q(t) =

∫ t0+ε

t0

W (t− s)B(v − û(s))ds,

E‖q(t)‖2 = E
∥∥∥∫ t0+ε

t0

W (t− s)B(v − û(s))ds
∥∥∥2

≤M
∫ t0+ε

t0

E‖B(v − û(s))‖2ds ≤Ml2

∫ t0+ε

t0

E‖(v − û(s))‖2ds

≤ ε2Ml2.(3.9)

From Lemma 2.4, (H1)-(H3), (3.7) and (3.9) it follows that,

E‖x(t)− x̂(t)‖2

≤ 4E
∥∥∥ ∫ t0+ε

t0

W (t− s){f(s, x(s))− f(s, x̂(s))}ds
∥∥∥2

+ 4E‖q(t)‖2 + 4E
∥∥∥∫ t0+ε

t0

W (t− s){g(s, x(s))− g(s, x̂(s))}dw(s)
∥∥∥2

+ 4E
∥∥∥∫ t0+ε

t0

W (t− s)
∫
Z

{e(s, x(s), η)− e(s, x̂(s), η)}Ñ(ds, dη)
∥∥∥2

≤ 4M

∫ t0+ε

t0

E‖f(s, x(s))− f(s, x̂(s))‖2ds
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12 D. NAGARAJAN AND M. PALANISAMY

+ 4ε2Ml2 + 4MLg

∫ t0+ε

t0

E‖g(s, x(s))− g(s, x̂(s))‖2ds

+ 4M

∫ t0+ε

t0

∫
Z

E‖e(s, x(s), η)− e(s, x̂(s), η)‖2λ(dη)ds

≤ 4Ml21‖k‖2L2(0,T )

∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds+ 4ε2Ml2

+ 4MLgMg

∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds+ 4MMe

∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds

≤
[
4Ml21‖k‖2L2(0,T ) + 4MLgMg + 4MMe

] ∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds+ 4ε2Ml2

≤ 4MC

∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds+ 4ε2Ml2,

where C = l21‖k‖2L2(0,T ) + LgMg +Me. By using Gronwall’s inequality,

E‖x(t)− x̂(t)‖2 ≤ 4ε2Ml2 exp
(∫ t0+ε

t0

4MCds
)

= 4ε2Ml2 exp(4MCε)

⇒ E‖x(t)− x̂(t)‖2 ≤ εc2l2 exp(c2C)(3.10)

for some positive constant c2 = 4Mε. Clearly, it holds the inequality (3.10) in
case where 0 ≤ t < t0 + ε. Since û is optimal, we have that

0 ≤ 1

ε
(J (u)− J (û))

=
1

ε

[1

2
E
(∫ T

0

‖C(t)x(t)− y(t)‖2dt−
∫ T

0

‖C(t)x̂(t)− y(t)‖2dt
)]

=
1

2ε
E
[ ∫ T

0

〈C(t)x(t)− y(t), C(t)x(t)− y(t)〉dt

−
∫ T

0

〈C(t)x̂(t)− y(t), C(t)x̂(t)− y(t)〉dt
]

=
1

2ε
E
[ ∫ T

0

{〈C(t)x(t), C(t)x(t)〉 − 〈C(t)x(t), y(t)〉 − 〈y(t), C(t)x(t)〉

+ 〈y(t), y(t)〉 − 〈C(t)x̂(t), C(t)x̂(t)〉

+ 〈C(t)x̂(t), y(t)〉+ 〈y(t), C(t)x̂(t)〉 − 〈y(t), y(t)〉}dt
]
.

Since Z is a real Hilbert space,

0 ≤ 1

ε
(J (u)− J (û))

=
1

2ε
E
[ ∫ T

0

{〈C(t)x(t), C(t)x(t)〉 − 2〈C(t)x(t), y(t)〉+2〈C(t)x̂(t), y(t)〉
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 13

− 〈C(t)x̂(t), C(t)x̂(t)〉}dt
]

=
1

2ε
E
[ ∫ T

0

{〈C(t)x(t), C(t)x(t)〉 − 2〈C(t)x(t), y(t)〉

+ 2〈C(t)x̂(t), y(t)〉 − 〈C(t)x̂(t), C(t)x̂(t)〉
+ 2〈C(t)x(t), C(t)x̂(t)〉 − 2〈C(t)x(t), C(t)x̂(t)〉

+ 〈C(t)x̂(t), C(t)x̂(t)〉 − 〈C(t)x̂(t), C(t)x̂(t)〉}dt
]

=
1

2ε
E
[ ∫ T

0

{〈2C(t)x(t), C(t)x̂(t)〉 − 2〈C(t)x(t), y(t)〉

+ 2〈C(t)x̂(t), y(t)〉 − 〈2C(t)x̂(t), C(t)x̂(t)〉}dt
]

+
1

2ε
E
[ ∫ T

0

{〈C(t)x(t), C(t)x(t)〉 − 〈C(t)x(t), C(t)x̂(t)〉

− 〈C(t)x̂(t), C(t)x(t)〉+ 〈C(t)x̂(t), C(t)x̂(t)〉}dt
]

=
1

ε
E
[ ∫ T

0

〈C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t)〉dt
]

+
1

2ε
E
[ ∫ T

0

‖C(t)(x(t)− x̂(t))‖2dt
]
.

= IA + IB .(3.11)

From (3.10), it follows that

(3.12) lim
ε→0

IB = 0.

The first term of (3.11) can be represented as,

IA =
1

ε
E
∫ T

t0

〈C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t)〉dt

=
1

ε
E
∫ t0+ε

t0

〈C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t)〉dt

+
1

ε
E
∫ T

t0+ε

〈C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t)〉dt

= I1 + I2.

Considering (3.10), it holds that

(3.13) lim
ε→0

I1 = 0.

Therefore, for ε→ 0, (3.11) becomes that,

0 ≤ lim
ε→0

I2.
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14 D. NAGARAJAN AND M. PALANISAMY

Consider,

E‖f(s, x(s))− f(s, x̂(s))‖2 ≤ l21‖k‖2
∫ T

0

E‖x(t)− x̂(t)‖2dt

≤ l21‖k‖2T [εl2c2 exp(c2C)].

Then, we have that,

E
∥∥∥∫ t0+ε

t0

W (t− s)[f(s, x(s))− f(s, x̂(s))]ds
∥∥∥2

≤ M

∫ t0+ε

t0

E‖f(s, x(s))− f(s, x̂(s))‖2ds

≤ Ml21‖k‖2
∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds

≤ Ml21‖k‖2T [εc2l2 exp(c2C)](t0 + ε− t0)

≤ ε2c2T l
2
1‖k‖2Ml2 exp(c2C).(3.14)

Also we have that,

E
∥∥∥ ∫ t0+ε

t0

W (t− s)[g(s, x(s))− g(s, x̂(s))]dw(s)
∥∥∥2

≤ MLgMg

∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds

≤ MLgMg[εc2l2 exp(c2C)](t0 + ε− t0)

⇒ E
∥∥∥ ∫ t0+ε

t0

W (t− s)[g(s, x(s))− g(s, x̂(s))]dw(s)
∥∥∥2(3.15)

≤ ε2c2Ml2LgMg exp(c2C),

and

E
∥∥∥∫ t0+ε

t0

W (t− s)
∫
Z

[e(s, x(s), η)− e(s, x̂(s), η)]Ñ(ds, dη)
∥∥∥2

≤ MMe

∫ t0+ε

t0

E‖x(s)− x̂(s)‖2ds

≤ ε2c2Ml2Me exp(c2C).(3.16)

Thus, we obtain

lim
ε→0

1

ε
E‖x(t)− x̂(t)‖2

= lim
ε→0

1

ε

[
E
∥∥∥∫ t0+ε

t0

W (t− s)
{

[f(s, x(s))−f(s, x̂(s))]+B(v − û(s))
}
ds

+

∫ t0+ε

t0

W (t− s)[g(s, x(s))− g(s, x̂(s))]dw(s)
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OPTIMAL CONTROL ON SDES DRIVEN BY POISSON JUMPS 15

+

∫ t0+ε

t0

W (t− s)
∫
Z

[e(s, x(s), η)− e(s, x̂(s), η)]Ñ(ds, dη)
∥∥∥2]

≤ E‖W (t− t0)B(v − û)(t0)‖2.(3.17)

Thus, as in (3.11) we have that,

0 ≤ lim
ε→0

I2 ≤
∫ T

t0

E〈C(t)W (t− t0)B(v − û)(t0), C(t)x̂(t)− y(t)〉dt

that is, from (3.11) to (3.13), it follows that∫ T

s

E〈C(t)W (t− s)B(v − û)(s), C(t)x̂(t)− y(t)〉dt ≥ 0.

which holds for all v ∈ U and for every Lebesgue point s of û. Hence, we∫ T

s

E〈(v − û)(s), B∗W ∗(t− s)C∗(t)[C(t)x̂(t)− y(t)]〉dt ≥ 0

⇒ E〈(v − û)(s), B∗z(s)〉 ≤ 0,

where

z(s) =

∫ T

s

W ∗(t− s)C∗(t){y(t)− C(t)x̂(t)}dt.

Here z(s) is a solution in the weak sense of the equation (3.5). Hence

E[〈v,B∗(s)〉 − 〈û(s), B∗(s)〉] ≤ 0,

E[〈v,B∗(s)〉] ≤ E[〈û(s), B∗(s)〉].
Thus, the stochastic maximum principle holds for every v ∈ U . �

4. Example

This example concerns with an optimal control of stochastic Burgers equa-
tion. Consider the retarded stochastic type Burgers equation with Poisson
jumps,

∂z(t, x) =
[
γ
∂2

∂x2
z(t, x) +

∫ 0

−h
a(s)A1z(t+ s)ds+ F (t, z(t, x)) + p(x)ν(t)

]
∂t

+G(t, z(t, x))∂w(t) +

∫
Z

ηE(t, (z(t, x))N(ds, dη),(4.1)

0 ≤ x ≤ π, t ∈ J = [0, T ],

with viscosity γ > 0, the Dirichlet boundary conditions

z(t, 0) = z(t, π) = 0, t ≥ 0,(4.2)

and the initial condition

z(t, x) = φ(t, x), t ∈ [−h, 0) 0 ≤ x ≤ π.(4.3)

Let (Ω,Ft,P) be the complete probability space and H = L2([0, π]). Let w be
the H-valued Wiener process and N(dt, dη) be the Poisson counting measure
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16 D. NAGARAJAN AND M. PALANISAMY

and the compensated martingale measure is given by Ñ(dt, dη) = N(dt, dη)−
λ(dη)dt. Let A0 : D(A0) ⊆ H → V be an operator defined by

A0ξ = γ
∂2

∂x2
ξ,

with the domain

D(A0) =
{
ξ ∈ H : ξ and

( d
dx

)
ξ are absolutely continuous,( ∂2

∂x2

)
ξ ∈ H, ξ(0) = ξ(π) = 0

}
.

Further, A0 has a discrete spectrum, the eigen values are −n2, n = 1, 2, 3, . . .

with the corresponding eigen vectors, en(s)=
√

2
π sin(ns) and the set {en : n =

1, 2, 3, . . .} is an orthonormal basis of H. Then,

A0ξ =

∞∑
n=1

−n2〈ξ, en〉en, ξ ∈ H.

Thus A0 generates a compact semigroup S(t), t > 0 in H and is given by

S(t)ξ =

∞∑
n=1

e−n
2

〈ξ, en〉en, ξ ∈ H.

Let z(t)(x) = z(t, x). Let f : J × V → H be defined by

f(t, z(t))(x) = F (t, z(t)(x)), 0 ≤ x ≤ π, (t, z(t)) ∈ J ×H.

Let g : J × V → LQ(H) be defined by

g(t, z(t))(x) = G(t, z(t)(x)), 0 ≤ x ≤ π, (t, z(t)) ∈ J ×H.

Let e : J × V × Z → H be defined by

e(t, z(t)(x), (η)) = ηE(t, z(t)(x)), 0 ≤ x ≤ π, (t, z(t)) ∈ J ×H.

Let B be a continuous linear operator from Y to H. Put Bν(t) = p(x)ν.
We take the functions ν : Sx([0, π]) → R such that ν ∈ L2(Sx([0, π])) as
the controls. Set U(t) = {ν ∈ Y : ‖ν‖Y ≤ τ} where τ ∈ L2(J,R+). We
restrict the admissible controls Uad to be all the ν ∈ L2(Sx([0, π])), such that
‖ν(·, t)‖2 ≤ τ(t) a.e (see [15]). The solution of (4.1) is given as z(t, x). We
consider the cost function:

J (z, ν) = E
[ ∫ T

0

∫
[0,π]

‖etxz(t, x)− r(t, x)‖2dxdt+

∫ T

0

∫
[0,π]

‖ν(t, x)‖2dxdt
]
,

(4.4)

with respect to the system (4.1), where r(t, x) is a given desired velocity profile
with a suitable control ν(t, x) and etx = C(t) be a bounded function in Z.
The aim of the cost functional is that to get a final velocity field to be close to
r(t, x).
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Thus, with this choice of A0, B, f, g and e the problem (4.1) can be written in
the abstract form of (1.1) with the cost function (3.2). Hence, all the hypotheses
in Theorem 3.3 are satisfied. That is, there exists an admissible control ν̂ ∈ Uad
such that J (z, ν̂) ≤ J (z, ν)∀ ν ∈ Uad. Also, the nonlinear functions such as f ,
g and e satisfies the Lipschitz conditions and let ν̂ be the optimal control then

max
v∈U

E〈v,B∗z1(s)〉 = E〈ν̂(s), B∗z1(s)〉,

where the function z1(s) satisfies the corresponding transposed system of (4.1)-
(4.3) as in the Theorem 3.4.

5. Conclusion

This paper has been investigated about the optimal control on semilinear
stochastic functional differential equations with Poisson jumps in Hilbert space
by using the construction of the fundamental solution operator. We proved the
existence of an optimal control which is obtained by the solution of the proposed
system should satisfies the weakly sequentially compactness and Mazur’s the-
orem. Further the stochastic maximum principle for the optimal control have
been formulated and proved for the proposed system by setting a spike varia-
tion technique in the optimal control. Finally, an example is given to illustrate
this theory. In the future, the authors are interested to study the optimal con-
trol results on multi-valued fractional stochastic partial differential equations
with Poisson jumps in Hilbert space using variational inequalities.

Acknowledgements. The authors would like to express their sincere thanks
to the editor and anonymous reviewers for helpful comments and suggestions
to improve the quality of this manuscript.
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