
Ah
ea

d 
of

 P
rin

tBull. Korean Math. Soc. 0 (0), No. 0, pp. 1–0

https://doi.org/10.4134/BKMS.b170003

pISSN: 1015-8634 / eISSN: 2234-3016

ASYMPTOTIC STABILITY OF STRONG SOLUTIONS

FOR EVOLUTION EQUATIONS WITH

NONLOCAL INITIAL CONDITIONS

Pengyu Chen, Yibo Kong, and Yongxiang Li

Abstract. This paper is concerned with the global asymptotic stabil-
ity of strong solutions for a class of semilinear evolution equations with

nonlocal initial conditions on infinite interval. The discussion is based

on analytic semigroups theory and the gradually regularization method.
The results obtained in this paper improve and extend some related con-

clusions on this topic.

1. Introduction and main results

The theory of nonlocal Cauchy problem for abstract evolution equations was
motivated by physical problems. Indeed, it is demonstrated that the nonlocal
problems have better effects in applications than the classical Cauchy prob-
lems. For instance, nonlocal Cauchy problems have been used to represent
mathematical models for evolution of various phenomena, such as nonlocal
neural networks, nonlocal pharmacokinetics, nonlocal pollution and nonlocal
combustion, see McKibben [13] for the details. Due to nonlocal problems have
a wide range of applications in real world applications, differential or integro-
differential equations with nonlocal initial conditions were studied by many
authors and some basic results on nonlocal problems have been obtained, see
[2, 3, 6, 8, 12, 16, 19] and the references therein. But we observed that all of the
existing articles are only devoted to investigate the local existence of solutions
for evolution equations with nonlocal initial conditions on finite interval, we
haven’t seen the relevant paper to study the global existence of solutions for
nonlocal evolution equations on infinite interval. In addition, to the best of the
authors’ knowledge, in most of the existing articles, such as [6, 8, 12, 16], the
existence of mild solutions for nonlocal evolution equations have been studied
extensively, but there are very few paper studied the regularity for evolution
equations with nonlocal initial conditions. Only [2, 3, 19] studied the local
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regularity of solutions for evolution equations with nonlocal initial conditions
on finite interval and the assumptions are very strong.

On the other hand, the dynamical characteristics (including stable, unstable,
attract, oscillatory and chaotic behavior) of differential equations have become
a subject of intense research activities. For the details of this field, we refer
the reader to the monographs of Burton [1], Hale [9] and the papers of Caicedo
et al. [4], Chen and Guo [5], Li and Wang [11], Wang, Liu and Liu [17], Zhu,
Liu and Li [20]. As far as we know, no work has been done for the asymptotic
stability of strong solutions for nonlocal evolution equations. Motivated by
the above-mentioned aspects, in this work we discuss the global asymptotic
stability of strong solutions for a class of semilinear evolution equations with
nonlocal initial conditions

(1.1) u′(t) +Au(t) = f(t, u(t)), t ≥ 0,

(1.2) u(0) =

∞∑
k=1

γku(tk)

on infinite interval R+ = [0,+∞), where H is a Hilbert space, A : D(A) ⊂
H → H is a positive definite self-adjoint operator, f : R+ × H → H is a
nonlinear function satisfying some assumptions, 0 < t1 < t2 < · · · < tk < · · · ,
tk →∞ (k →∞), γk are real numbers, γk 6= 0, k = 1, 2, . . ..

Our main results are as follows:

Theorem 1.1. Let A be a positive definite self-adjoint operator in Hilbert
space H and it have compact resolvent. Assume that the nonlinear function
f : R+ × H → H is continuous and f(·, u(·)) ∈ L2(R+,H) for any u ∈ H,
‖f(·, θ)‖ ∈ L1(R+). If the following conditions

(C1)
∞∑
k=1

|γk| < eλ1t1 , where λ1 > 0 is the first eigenvalue of operator A;

(C2) There exists a constant 0 ≤ L <
λ1(1−e−λ1t1

∞∑
k=1

|γk|)

1+(1−e−λ1t1 )
∞∑
k=1

|γk|
such that

‖f(t, u(t))− f(t, v(t))‖ ≤ L‖u(t)− v(t)‖, ∀ t ∈ R+, u, v ∈ H,

Bour’s theorem hold, then the nonlocal problem (1.1)-(1.2) has a unique global
strong solution u? ∈W 1,2(R+,H)∩L2(R+, D(A)) and it is globally asymptoti-
cally stable.

If we replace the condition (C2) by the following condition

(C3) There exists a nonnegative function α, which is Lebesgue integrable

and satisfying
∫∞
0
α(s)ds <

1−e−λ1t1
∞∑
k=1

|γk|

1+(1−e−λ1t1 )
∞∑
k=1

|γk|
such that

‖f(t, u(t))− f(t, v(t))‖ ≤ α(t)‖u(t)− v(t)‖, ∀ t ∈ R+, u, v ∈ H,
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then we can obtain the following result.

Theorem 1.2. Let A be a positive definite self-adjoint operator in Hilbert
space H and it have compact resolvent. Assume that the nonlinear function f :
R+×H→ H is continuous and f(·, u(·)) ∈ L2(R+,H) for any u ∈ H, ‖f(·, θ)‖ ∈
L1(R+). If the conditions (C1) and (C3) are satisfied, then the nonlocal problem
(1.1)-(1.2) has a unique global strong solution u ∈W 1,2(R+,H)∩L2(R+, D(A)).

2. Preliminaries

Let H be a Hilbert space with inner product 〈·, ·〉, then ‖ · ‖ =
√
〈·, ·〉 is the

norm on H induced by inner product 〈·, ·〉. Denote

Cb(R+,H)={u | u : R+ → H is continuous and u(t) is bounded for all t∈ R+}.

Then it is easy to verify that Cb(R+,H) is a Banach space endowed with the
norm

‖u‖b = sup
t∈R+

‖u(t)‖, ∀ u ∈ Ce(R+,H).

We denote by L(H) the Banach space of all linear and bounded operators in
H, and by θ the zero element in H.

Throughout this paper, we assume that A : D(A) ⊂ H → H is a positive
definite self-adjoint operator in Hilbert space H and it have compact resolvent.
By the spectral resolution theorem of self-adjoint operator, the spectrum σ(A)
only consists of real eigenvalues and it can be arrayed in sequences as

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→+∞

λk =∞.

By the positive definite property of A, the first eigenvalue λ1 > 0. From Henry
[10] and Pazy [14], we know that −A generates an analytic operator semigroup
S(t) (t ≥ 0) on H, which is exponentially stable and satisfies ‖S(t)‖L(H) ≤ e−λ1t

for t ≥ 0. Since the positive definite self-adjoint operator A has compact
resolvent, the embedding D(A) ↪→ H is compact, and therefore S(t) (t ≥ 0) is
also a compact semigroup.

Next, we give some concepts and conclusions on the fractional powers of A.
For α > 0, A−α is defined by

A−α =
1

Γ(α)

∫ ∞
0

sα−1S(s)ds,

where Γ(·) is the Gamma function. A−α ∈ L(H) is injective, and Aα can be
defined by Aα = (A−α)−1 with the domain D(Aα) = A−α(H). For α = 0, let
Aα = I. We endow an inner product 〈·, ·〉α = 〈Aα·, Aα·〉 to D(Aα). Since Aα

is a closed linear operator, it follows that (D(Aα), 〈·, ·〉α) is a Hilbert space.
We denote by Hα the Hilbert space (D(Aα), 〈·, ·〉α). Especially, H0 = H and
H1 = D(A). For 0 ≤ α < β, Hβ is densely embedded into Hα and the
embedding Hβ ↪→ Hα is compact. For the details, we refer to [10] and [18].
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From [14, Chapter 4, Corollary 2.5], we know that for any u0 ∈ D(A), if
the linear function h is continuously differentiable on R+, then the initial value
problem of linear evolution equation (LIVP)

(2.1)

{
u′(t) +Au(t) = h(t), t ∈ R+,

u(0) = u0

exists a unique classical solution u ∈ C1((0,+∞),H) ∩ C((0,+∞), D(A)) ∩
C(R+, H) expressed by

(2.2) u(t) = S(t)u0 +

∫ t

0

S(t− s)h(s)ds.

If u0 ∈ H and h ∈ L1(R+,H), the function u given by (2.2) belongs to C(R+,H),
which is known as a mild solution of the LIVP (2.1). If a mild solution u of the
LIVP (2.1) belongs to W 1,1(R+,H) ∩ L1(R+, D(A)) and satisfies the equation
for a.e. t ∈ R+, we call it a strong solution. By [14, Chapter 4, Corollary 2.10],
we know that for any u0 ∈ D(A), if the linear function h is differentiable on
R+, then LIVP (2.1) exists a unique strong solution.

Define an operator B by

B =
(
I −

∞∑
k=1

γkS(tk)
)−1

.

Then by condition (C1), we know that∥∥∥ ∞∑
k=1

γkS(tk)
∥∥∥ ≤ ∞∑

k=1

|γk|e−λ1t1 < 1.

Therefore, from operator spectrum theorem we know that the operator B exists
and it is bounded. Furthermore, by Neumann expression, B can be expressed
by

B =

∞∑
n=0

( ∞∑
k=1

γkS(tk)
)n
.

Hence

‖B‖ ≤
∞∑
n=0

∥∥∥ ∞∑
k=1

γkS(tk)
∥∥∥n =

1

1−
∥∥∥ ∞∑
k=1

γkS(tk)
∥∥∥ ≤

1

1− e−λ1t1
∞∑
k=1

|γk|
.

To prove our main results, for any h ∈ Cb(R+,H), we consider the linear
evolution equation nonlocal problem (LEENP)

(2.3) u′(t) +Au(t) = h(t), t ∈ R+,

(2.4) u(0) =

∞∑
k=1

γku(tk).
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Lemma 2.1. If the condition (C1) is satisfied, then the LEENP (2.3)-(2.4)
exists a unique mild solution u ∈ Cb(R+,H) which is given by

(2.5) u(t) =

∞∑
k=1

γkS(t)B
∫ tk

0

S(tk − s)h(s)ds+

∫ t

0

S(t− s)h(s)ds, t ∈ R+.

Proof. By the above discussion, (2.1) and (2.2), we know that the evolution
equation (2.3) exists a unique mild solution u ∈ Cb(R+,H) which can be ex-
pressed by

(2.6) u(t) = S(t)u(0) +

∫ t

0

S(t− s)h(s)ds.

By (2.6), we know that for every k = 1, 2, . . .,

(2.7) u(tk) = S(tk)u(0) +

∫ tk

0

S(tk − s)h(s)ds.

From (2.4) and (2.7), we have

(2.8) u(0) =

∞∑
k=1

γkS(tk)u(0) +

∞∑
k=1

γk

∫ tk

0

S(tk − s)h(s)ds.

Since I −
∑∞
k=1 γkS(tk) has a bounded inverse operator B, by (2.8) we know

that

(2.9) u(0) =

∞∑
k=1

γkB
∫ tk

0

S(tk − s)h(s)ds.

Combining (2.6) and (2.9), we get that the mild solution u satisfies (2.5).
Inversely, we can verify directly that the function u ∈ Cb(R+,H) given by

(2.5) is a mild solution of LEENP (2.3)-(2.4). �

The following two lemmas will be used in the proof of our main results.

Lemma 2.2 ([15, Chapter II, Theorem 3.3]). Assume that V and H are two
Hilbert space, V ⊂ H, V denses in H, the injection is continuous and compact,
A : D(A) ⊂ H → V is a positive definite self-adjoint operator in H. Then for
any u0 ∈ V and h ∈ L2(R+,V), the mild solution of the LIVP (2.1) has the
regularity

u ∈W 1,2(R+,H) ∩ L2(R+, D(A)) ∩ C(R+,V).

Lemma 2.3 ([7]). If

m(t) ≤ g(t) +

∫ t

0

k(s)m(s)ds, t ∈ [0, T ),

where all the functions involved are continuous on [0, T ), T ≤ +∞, and k(t) ≥
0, g(t) is nondecreasing. Then

m(t) ≤ g(t) exp
(∫ t

0

k(s)ds
)
, t ∈ [0, T ).
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3. Proof of the main results

Proof of Theorem 1.1. Firstly, we prove the uniqueness of the global strong so-
lution for nonlocal problem (1.1)-(1.2). Consider the operator Q on Cb(R+,H)
defined by

(Qu)(t) =

∞∑
k=1

γkS(t)B
∫ tk

0

S(tk − s)f(s, u(s))ds

+

∫ t

0

S(t− s)f(s, u(s))ds, t ∈ R+.

(3.1)

By the condition (C1) and Lemma 2.1, it is easy to see that the mild solution
of nonlocal problem (1.1)-(1.2) is equivalent to the fixed point of the operator
Q defined by (3.1).

Next, we will show that the operator Q maps the functions in Cb(R+,H) to
Cb(R+,H). For any u ∈ Cb(R+,H), by the condition (C2), we know that

(3.2) ‖f(t, u(t))‖ ≤ L‖u(t)‖+ ‖f(t, θ)‖, t ∈ R+.

Therefore, by (3.1) and (3.2), we get that

‖(Qu)(t)‖ ≤
∥∥∥ ∞∑
k=1

γkS(t)B
∫ tk

0

S(tk − s)f(s, u(s))ds
∥∥∥

+
∥∥∥∫ t

0

S(t− s)f(s, u(s))ds
∥∥∥

≤
∞∑
k=1

|γk|e−λ1t‖B‖
∫ tk

0

e−λ1(tk−s)[L‖u(s)‖+ ‖f(s, θ)‖]ds

+

∫ t

0

e−λ1(t−s)[L‖u(s)‖+ ‖f(s, θ)‖]ds

≤

∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

∫ t

0

e−λ1(t−s)[L‖u‖b + ‖f(s, θ)‖]ds

+

∫ t

0

e−λ1(t−s)[L‖u‖b + ‖f(s, θ)‖]ds

≤
1 + (1− e−λ1t1)

∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

[‖u‖bL
λ1

+

∫ ∞
0

‖f(s, θ)‖ds
]
.

(3.3)

By (3.3), the condition (C2) and the fact that ‖f(t, θ)‖ ∈ L1(R+), we know
that

‖Qu‖b = sup
t∈R+

‖(Qu)(t)‖ < +∞,
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which means that Qu ∈ Cb(R+,H).
For any u, v ∈ Cb(R+,H), by (3.1) and the condition (C2), we get that

‖(Qu)(t)− (Qv)(t)‖ ≤
∞∑
k=1

|γk|e−λ1t‖B‖
∫ tk

0

e−λ1(tk−s)

× ‖f(s, u(s))− f(s, v(s))‖ds

+

∫ t

0

e−λ1(t−s)‖f(s, u(s))− f(s, v(s))‖ds

≤

∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

∫ t

0

e−λ1(t−s)L‖u− v‖bds

+

∫ t

0

e−λ1(t−s)L‖u− v‖bds

≤
1 + (1− e−λ1t1)

∞∑
k=1

|γk|

λ1(1− e−λ1t1
∞∑
k=1

|γk|)
L‖u− v‖b.

(3.4)

By (3.4) and condition (C2), we know that

‖Qu−Qv‖b = sup
t∈R+

‖(Qu)(t)−Qv)(t)‖ < ‖u− v‖b.

Hence, Q : Cb(R+,H)→ Cb(R+,H) is a contraction operator, and therefore Q
has a unique fixed point u? ∈ Cb(R+,H), which is in turn the unique mild solu-
tion of nonlocal problem (1.1)-(1.2) on R+. Since u? is the unique mild solution
of LEENP (2.3)-(2.4) for h(·) = f(·, u?(·)) and h(·) = f(·, u?(·)) ∈ L2(R+,H),
by the maximal regularity of linear evolution equations with positive definite
operator in Hilbert spaces (see for details Lemma 2.2), when u?(0) = u0 ∈ V :=
H 1

2
, the mild solution of the LEENP (2.3)-(2.4) has the regularity

(3.5) u? ∈W 1,2(R+,H) ∩ L2(R+, D(A)) ∩ C(R+,H 1
2
)

and it is a strong solution.
We noticed that u?(t) is the mild solution of the LEENP (2.3)-(2.4) for

u?(0) =

∞∑
k=1

γkB
∫ tk

0

S(tk − s)h(s)ds.

By the representation (2.2) of mild solution, u?(t) = S(t)u?(0) + v(t), where

v(t) =
∫ t
0
S(t−s)h(s)ds. Since the function v(t) is a mild solution of the LEENP

(2.3)-(2.4) with the null initial value u?(0) = θ, v has the regularity (3.5). By
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the analytic property of the semigroup S(t), S(tk)u?(0) ∈ D(A) ⊂ H1/2. Hence,

u?(0) =

∞∑
k=1

γkS(tk)u?(0) +

∞∑
k=1

γkv(tk) ∈ H1/2.

Using the regularity (3.5) again, we obtain that u? ∈ W 1,2(R+,H) ∩ L2(R+,
D(A)) and it is a strong solution of the LEENP (2.3)-(2.4), which means
that the unique fixed point u? of the operator Q defined by (3.1) belongs to
W 1,2(R+,H)∩L2(R+, D(A)) is the unique global strong solution of the nonlocal
problem (1.1)-(1.2).

Secondly, we investigate the global asymptotic stability of strong solution
for nonlocal problem (1.1)-(1.2). By the condition (C2), Banach contraction
theorem, Lemma 2.2, the method used in the proof of the regularity for u? and
the fact f(·, u(·)) ∈ L2(R+,H), we know that for any u0 ∈ H, the initial value
problem of evolution equation

(3.6)

{
u′(t) +Au(t) = f(t, u(t)), t ∈ R+,

u(0) = u0

exists a unique global strong solution u ∈W 1,2(R+,H) ∩ L2(R+, D(A)) and it
satisfies

(3.7) u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s, u(s))ds, t ∈ R+.

From the semigroup representation of the solutions, the unique global strong
solution u? of the nonlocal problem (1.1)-(1.2) satisfies the integral equation

(3.8) u?(t) = S(t)u?(0) +

∫ t

0

S(t− s)f(s, u?(s))ds, t ∈ R+.

From (3.7), (3.8) and the condition (C2), we get that

‖u?(t)− u(t)‖ ≤ ‖S(t)‖‖u?(0)− u0‖

+

∫ t

0

‖S(t− s)‖‖f(s, u?(s))− f(s, u(s))‖ds

≤ e−λ1t‖u?(0)− u(0)‖+

∫ t

0

e−λ1(t−s)L‖u?(s)− u(s)‖ds

≤ e−λ1t‖u?(0)− u(0)‖

+ e−λ1t

∫ t

0

Leλ1s‖u?(s)− u(s)‖ds, t ∈ R+.

(3.9)

Let m(t) = eλ1t‖u?(t)− u(t)‖, t ∈ R+. By (3.9), we know that

(3.10) m(t) ≤ m(0) +

∫ t

0

Lm(s)ds, t ∈ R+.
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Therefore, by Lemma 2.3 and (3.10), we get that

(3.11) m(t) = eλ1t‖u?(t)− u(t)‖ ≤ m(0)e
∫ t
0
Lds, t ∈ R+.

Set ρ := λ1 − L, from the condition (C2), we know that ρ > 0. Therefore, by
(3.11), we have

‖u?(t)− u(t)‖ ≤ m(0)e−ρt → 0 (t→ +∞).

Hence, the global strong solution u? is globally asymptotically stable. Fur-
thermore, from the proof process, we easily see that the global strong solution
u? exponentially attracts every strong solution of the initial value problem
(3.6). �

Proof of Theorem 1.2. By Theorem 1.1, we know that the mild solution of the
nonlocal problem (1.1)-(1.2) is equivalent to the fixed point of the operator Q
defined by (3.1). For any u ∈ Cb(R+,H), by the condition (C3) we know that
for any t ∈ R+,

(3.12) ‖f(t, u(t))‖ ≤ α(t)‖u(t)‖+ ‖f(t, θ)‖.

Therefore, by (3.1), (3.12) and the condition (C3), we get that

‖(Qu)(t)‖ ≤
∥∥∥ ∞∑
k=1

γkS(t)B
∫ tk

0

S(tk − s)f(s, u(s))ds
∥∥∥

+
∥∥∥ ∫ t

0

S(t− s)f(s, u(s))ds
∥∥∥

≤
∞∑
k=1

|γk|e−λ1t‖B‖
∫ tk

0

e−λ1(tk−s)[α(s)‖u(s)‖+ ‖f(s, θ)‖]ds

+

∫ t

0

e−λ1(t−s)[α(s)‖u(s)‖+ ‖f(s, θ)‖]ds

≤

∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

∫ t

0

[α(s)‖u‖b + ‖f(s, θ)‖]ds

+

∫ t

0

[α(s)‖u‖b + ‖f(s, θ)‖]ds

< ‖u‖b +

1 + (1− e−λ1t1)
∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

∫ ∞
0

‖f(s, θ)‖ds.

(3.13)

By (3.13) and the fact that ‖f(t, θ)‖ ∈ L1(R+), we know that

‖Qu‖b = sup
t∈R+

‖(Qu)(t)‖ < +∞,
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which means that Qu ∈ Cb(R+,H). Therefore, the operator Q maps the func-
tions in Cb(R+,H) to Cb(R+,H).

For any u, v ∈ Cb(R+,H), by (3.1) and the condition (C3), we get that

‖(Qu)(t)− (Qv)(t)‖ ≤
∞∑
k=1

|γk|e−λ1t‖B‖
∫ tk

0

e−λ1(tk−s)

× ‖f(s, u(s))− f(s, v(s))‖ds

+

∫ t

0

e−λ1(t−s)‖f(s, u(s))− f(s, v(s))‖ds

≤

∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

∫ t

0

e−λ1(t−s)α(s)‖u− v‖bds

+

∫ t

0

e−λ1(t−s)α(s)‖u− v‖bds

≤
1 + (1− e−λ1t1)

∞∑
k=1

|γk|

1− e−λ1t1
∞∑
k=1

|γk|

∫ ∞
0

α(s)ds‖u− v‖b

< ‖u− v‖b,

(3.14)

from which we know that

‖Qu−Qv‖b = sup
t∈R+

‖(Qu)(t)−Qv)(t)‖ < ‖u− v‖b.

Hence, Q : Cb(R+,H) → Cb(R+,H) is a contraction operator, and therefore
Q has a unique fixed point u ∈ Cb(R+,H), which is in turn the unique mild
solution of nonlocal problem (1.1)-(1.2) on R+. By using a completely similar
method with which used in the proof of Theorem 1.1, we can prove that u ∈
W 1,2(R+,H)∩L2(R+, D(A)) is the unique global strong solution of the nonlocal
problem (1.1)-(1.2). �
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