A comparison theorem of the eigenvalue gap for one-dimensional barrier potentials
Bull. Korean Math. Soc. 2000 Vol. 37, No. 2, 353-360
Jung-Soon Hyun
Yeungnam University
Abstract : The fundamental gap between the lowest two Dirichlet eigenvalues for a Schr\"{o}dinger operator $H_R=-\frac{d^2}{dx^2}+V(x)$ on $L^2\left(\left[ -R,R\right]\right)$ is compared with the gap for a same operator $H_S$ with a different domain $\left[-S,S\right]$ and the difference is exponentially small when the potential has a large barrier.
Keywords : Schrodinger operator, eigenvalue gap
MSC numbers : 34L40
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd