Dualities of Variable Anisotropic Hardy Spaces and Boundedness of Singular Integral Operators
Bull. Korean Math. Soc.
Published online November 5, 2020
Wenhua Wang
Wuhan University
Abstract : Let $A$ be an expansive dilation on $\mathbb{R}^n$,
and $p(\cdot):\mathbb{R}^n\rightarrow(0,\,\infty)$ be a variable exponent function satisfying the globally log-H\"{o}lder continuous condition. Let $H^{p(\cdot)}_A({\mathbb {R}}^n)$ be the variable anisotropic Hardy space defined via the non-tangential grand
maximal function. In this paper, the author obtain
the boundedness of anisotropic convolutional $\delta$-type Calder\'on-Zygmund operators
from $H^{p(\cdot)}_{A}(\mathbb{R}^n)$ to $L^{p(\cdot)}(\mathbb{R}^n)$ or from $H^{p(\cdot)}_{A}(\mathbb{R}^n)$ to itself.
In addition, the author also obtain the duality between $H^{p(\cdot)}_ A(\mathbb{R}^n)$ and the anisotropic Campanato spaces with variable exponents.
Keywords : Anisotropy, Hardy space, atom, Calder\'on-Zygmund operator, Campanato space.
MSC numbers : Primary 42B20; Secondary 42B30, 46E30.
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd