Estimates for the higher order Riesz transforms related to Schr\"odinger type operators
Bull. Korean Math. Soc. 2021 Vol. 58, No. 1, 235-251
https://doi.org/10.4134/BKMS.b200240
Published online November 3, 2020
Printed January 31, 2021
Yanhui Wang
Jiaozuo University
Abstract : We consider the Schr\"odinger type operator \(\mathcal{L}_k=(-\Delta)^k+V^k \) on \(\mathbb{R}^n ( n\geq 2k+1)\), where \(k=1,2\) and the nonnegative potential \(V\) belongs to the reverse H\"older class \(RH_s\) with \( n/21/2,$ where $p_1=\frac{n}{4(\beta-\alpha)-2}$, $p_2=\frac{n}{n-4(\beta-\alpha)+2}.$ Moreover, we prove that $T_{\alpha,\beta}$ is bounded from $BMO_{\mathcal{L}_1}(\mathbb{R}^n)$ to itself when $\beta-\alpha=1/2.$
Keywords : Riesz transform, Schr\"odinger operator, Hardy space, BMO
MSC numbers : Primary 35J10, 42B35
Downloads: Full-text PDF   Full-text HTML

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd