Estimates for the Higher Order Riesz Transforms related to Schr\"odinger type operators
Bull. Korean Math. Soc.
Published online November 3, 2020
Yanhui Wang
Jiaozuo University
Abstract : We consider the Schr\"odinger type operator \(\mathcal{L}_k=(-\Delta)^k+V^k \) on \(\mathbb{R}^n ( n\geq 2k+1)\), where \(k=1,2\) and the nonnegative potential \(V\) belongs to the reverse H\"older class \(RH_s\) with \( n/2<s<n.\) Let $H^1_{\mathcal{L}_k}(\mathbb{R}^n)$ denote the Hardy space related to
$\mathcal{L}_k,$ and let $BMO_{\mathcal{L}_1}(\mathbb{R}^n)$ denote the dual space of
$H^1_{\mathcal{L}_1}(\mathbb{R}^n).$ In this paper, we establish the $(L^{p},L^{q})$-boundedness of the higher order Riesz transform $T_{\alpha,\beta}=V^{2\alpha} \nabla^2 \mathcal{L}_2^{-\beta}(0\leq \alpha\leq 1/2< \beta\leq 1,\beta-\alpha\geq\frac{1}{2})$ and its adjoint operator $T^*_{\alpha,\beta}$ respectively.
We show that $T_{\alpha,\beta}$ is bounded from Hardy type space \(H^1_{\mathcal{L}_2}(\mathbb{R}^n)\) into $L^{p_2}(\mathbb{R}^n)$ and $T^*_{\alpha,\beta}$ is bounded from $L^{p_1}(\mathbb{R}^n)$ into $BMO$ type space $BMO_{\mathcal{L}_1}(\mathbb{R}^n)$ when $\beta-\alpha>1/2,$ where $p_1=\frac{n}{4(\beta-\alpha)}, p_2=\frac{n}{n-4(\beta-\alpha)}.$ Moreover, we prove that $T_{\alpha,\beta}$ is bounded from $BMO_{\mathcal{L}_1}(\mathbb{R}^n)$ to itself when $\beta-\alpha=1/2.$
Keywords : Riesz transform, Schr\"odinger operator, Hardy space, BMO.
MSC numbers : 42B30; 35J10; 42B35
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd