Finitely generated $G$-projective modules over PVMDs
Bull. Korean Math. Soc.
Published online October 24, 2019
Kui Hu, Jung Wook Lim, and Shiqi Xing
Southwest University of Science and Technology, Kyungpook National University, Chengdu University of Information Technology
Abstract : Let $M$ be a finitely generated $G$-projective $R$-modules over a PVMD $R$. We prove that $M$ is projective if and only if the canonical map $\theta: M\bigotimes_R M^* \rightarrow Hom_R(Hom_R(M,M),R)$ is a surjective homomorphism. Particularly, if $G{\mbox-}gldim(R) < \infty$ and $Ext_ R^i(M,M) = 0 (i \geq1)$, then $M$ is projective.
Keywords : Gorenstein projective module, projective modules, PVMD
MSC numbers : 13G05, 13D03
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd