A note on cohomological dimension over Cohen-Macaulay rings
Bull. Korean Math. Soc.
Published online August 20, 2019
Iraj Bagheriyeh, Kamal Bahmanpour, and Ghader Ghasemi
University of Mohaghegh Ardabili
Abstract : Let $(R,\m)$ be a Noetherian local Cohen-Macaulay ring and $I$ be a proper ideal of $R$.
Assume that $\beta_R(I,R)$ denotes the constant value of ${\rm depth}_R(R/I^{n}R )$ for $n\gg0$.
In this paper we introduce the new notion $\gamma_R(I,R)$ and the we prove the following inequalities:
$$\beta_R(I,R)\leq\gamma_R(I,R)\leq \dim R - \cd(I,R)\leq \dim R/I.$$ Also, some applications of these inequalities will be included.
Keywords : canonical module, Cohen-Macaulay ring, cohomological dimension, local cohomology, Noetherian ring
MSC numbers : 13D45, 13E05
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd