$w$-Matlis Cotorsion Modules and $w$-Matlis Domains
Bull. Korean Math. Soc.
Published online August 6, 2019
yongyan pu, Gaohua Tang, and Fanggui Wang
Panzhihua University, Qinzhou University, Sichuan Normal University
Abstract : Let $R$ be a domain with its field $Q$ of quotients. An $R$-module $M$ is said to be weak $w$-projective if $\Ext^1_R(M,N)=0$ for all $N\in \mathcal{P}^{\dag}_w$, where $\mathcal{P}^{\dag}_w$ denotes the class of $\GV$-torsionfree $R$-modules $N$ with the property that $\Ext^k_R(M,N)=0$ for all $w$-projective $R$-modules $M$ and for all integers $k\geq 1$. In this paper, we define a domain $R$ to be $w$-Matlis if the weak $w$-projective dimension of the $R$-module of $Q$ is $\leq1$. To characterize $w$-Matlis domains. We introduce the concept of $w$-Matlis cotorsion modules and study some basic properties of $w$-Matlis modules. Using these concepts, we show that $R$ is a $w$-Matlis domain if and only if $\Ext^k_R(Q,D)=0$ for any $\mathcal{P}^{\dag}_w$-divisible $R$-module $D$ and any integer $k\geq1$ if and only if every $\mathcal{P}^{\dag}_w$-divisible module is $w$-Matlis cotorsion if and only if w.$w$-$\pd_RQ/R\leq1$.
Keywords : $\mathcal{P}^{\dag}_w$-divisible modules; weak $w$-projective module; $w$-Matlis cotorsion module; $w$-strongly flat module; $w$-Matlis domain
MSC numbers : 13C11, 13C99, 13G05
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd