The number of representations of a positive integer by triangular, square and decagonal numbers
Bull. Korean Math. Soc. 2019 Vol. 56, No. 5, 1143-1157
https://doi.org/10.4134/BKMS.b180914
Published online September 30, 2019
Uha Isnaini, Ray Melham, Pee Choon Toh
Nanyang Technological University; University of Technology, Sydney; Nanyang Technological University
Abstract : Let $T_aD_b(n)$ and $T_aD'_b(n)$ denote respectively the number of representations of a positive integer $n$ by $a(x^2-x)/2 +b(4y^2-3y)$ and $a(x^2-x)/2 +b(4y^2-y)$. Similarly, let $S_aD_b(n)$ and $S_aD'_b(n)$ denote respectively the number of representations of $n$ by $ax^2 +b(4y^2-3y)$ and $ax^2 +b(4y^2-y)$. In this paper, we prove 162 formulas for these functions.
Keywords : representations by binary quadratic forms
MSC numbers : Primary 11E25, 11E16
Downloads: Full-text PDF   Full-text HTML

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd