$\mathcal{F_{S}}$-Mittag-Leffler modules and global dimension relative to $\mathcal{F_{S}}$-Mittag-Leffler modules
Bull. Korean Math. Soc.
Published online 2019 May 16
Mingzhao Chen and Fanggui Wang
Sichuan Normal University
Abstract : Let $R$ be any commutative ring and $S$ be any multiplicative closed set. We use an $S$-version to generalize $\mathcal{F}$-Mittag-Leffler modules, called $\mathcal{F_{S}}$-Mittag-Leffler modules, and define the projective dimension with respect to these modules. We give some characterizations of $\mathcal{F_{S}}$-Mittag-Leffler modules, investigate the relationships between $\mathcal{F}$-Mittag-Leffler modules and $\mathcal{F_{S}}$-Mittag-Leffler modules, and use these relations to describe noetherian rings and coherent rings, such as $R$ is noetherian if and only if $R_{S}$ is noetherian and every $\mathcal{F_{S}}$-Mittag-Leffler module is $\mathcal{F}$-Mittag-Leffler. Besides, We also investigate the $\mathcal{M}^\mathcal{F_{S}}$-global dimension of $R$, and prove that $R_{S}$ is noetherian if and only if its $\mathcal{M}^\mathcal{F_{S}}$-global dimension is zero; $R_{S}$ is coherent if and only if its $\mathcal{M}^\mathcal{F_{S}}$-global dimension is at most one.
Keywords : $S$-finitely generated; $S$-exact; $\mathcal{F}$-Mittag-Leffler; $\mathcal{F_{S}}$-Mittag-Leffler
MSC numbers : 13B30; 13D05; 13E05
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang.co., Ltd