Negacyclic codes of length $8p^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$
Bull. Korean Math. Soc.
Published online October 17, 2019
Chakkrid Klin-eam and Jirayu Phuto
Faculty of Science, Naresuan University
Abstract : Let $p$ be an odd prime. The algebraic structures of all negacyclic codes of length $8p^s$ over the finite commutative chain ring $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$ where $u^2=0$ are studied in this paper. Moreover, we classify the structures into 5 cases: $p^m\equiv 1 \pmod{16}$, $p^m\equiv 3,11 \pmod{16}$, $p^m\equiv 5,13 \pmod{16}$,
$p^m\equiv 7,15 \pmod{16}$ and $p^m\equiv 9 \pmod{16}$. From that, the structure of self-dual negacyclic codes, number of codewords of negacyclic codes are obtained.
Keywords : negacyclic codes, finite chain rings, constacyclic codes, repeated-root codes
MSC numbers : Primary 94B15, 94B05; Secondary 11T71
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd