A note on local commutators in division rings with involution
Bull. Korean Math. Soc.
Published online 2019 Mar 04
Mai Hoang Bien
University of Science, VNUHCM
Abstract : In this paper, we consider a conjecture of I. N. Herstein for local commutators of symmetric elements and unitary elements of division rings. For example, we show that if $D$ is a finite dimensional division ring with involution $\star$ and if $a\in D^*=D\backslash\{0\}$ such that local commutators $axa^{-1}x^{-1}$ at $a$ are radical over the center $Z(D)$ of $D$ for every $x\in D^*$ with $x^\star=x$, then either $a\in Z(D)$ or $\dim_{Z(D)}D= 4$.
Keywords : division ring; involution; symmetric element; unitary element; local commutator
MSC numbers : 16K20; 16R50
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang.co., Ltd