Maps preserving Jordan and $\ast$-Jordan triple product on operator $\ast$-algebras
Bull. Korean Math. Soc. 2019 Vol. 56, No. 2, 451-459
Published online March 1, 2019
Vahid Darvish, Mojtaba Nouri, Mehran Razeghi, Ali Taghavi
University of Mazandaran; University of Mazandaran; University of Mazandaran; University of Mazandaran
Abstract : Let $\mathcal{A}$ and $\mathcal{B}$ be two operator $\ast$-rings such that $\mathcal{A}$ is prime. In this paper, we show that if the map $\Phi:\mathcal{A}\to\mathcal{B}$ is bijective and preserves Jordan or $\ast$-Jordan triple product, then it is additive. Moreover, if $\Phi$ preserves Jordan triple product, we prove the multiplicativity or anti-multiplicativity of $\Phi$. Finally, we show that if $\mathcal{A}$ and $\mathcal{B}$ are two prime operator $\ast$-algebras, $\Psi:\mathcal{A}\to\mathcal{B}$ is bijective and preserves $\ast$-Jordan triple product, then $\Psi$ is a $\mathbb{C}$-linear or conjugate $\mathbb{C}$-linear $\ast$-isomorphism.
Keywords : $\ast$-Jordan triple product, $\ast$-algebra
MSC numbers : 47B48, 46L10
Downloads: Full-text PDF   Full-text HTML


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd