Boundedness of the strong maximal operator with the Hausdorff content
Bull. Korean Math. Soc.
Published online 2018 Sep 07
Hiroki Saito
Nihon University
Abstract : Let $n$ be the spatial dimension.
For $d,0<d\le n$,
let $H^{d}$ be the $d$-dimensional Hausdorff content.
The purpose of this paper is to prove the boundedness of the dyadic strong maximal operator
on the Choquet space $L^{p}(H^{d},{\mathbb R}^n)$ for $\min(1,d)<p$.
We also show that our result is sharp.
Keywords : strong maximal operator, Hausdorff content
MSC numbers : 42B25
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang.co., Ltd