Pattern formation in a general Degn-Harrison reaction model
Bull. Korean Math. Soc. 2017 Vol. 54, No. 2, 655-666
https://doi.org/10.4134/BKMS.b160249
Published online March 31, 2017
Jun Zhou
Southwest University
Abstract : In this paper, we study the pattern formation to a general Degn-Harrison reaction model. We show Turing instability happens by analyzing the stability of the unique positive equilibrium with respect to the PDE model and the corresponding ODE model, which indicate the existence of the non-constant steady state solutions. We also show the existence periodic solutions of the PDE model and the ODE model by using Hopf bifurcation theory. Numerical simulations are presented to verify and illustrate the theoretical results.
Keywords : Degn-Harrison reaction model, pattern formation, Turing instability, Hopf bifurcation
MSC numbers : 35B36, 35B32, 35K57, 35J61, 92C40, 92C45, 92E20
Downloads: Full-text PDF  


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd