Injective linear maps on $\mathcal{T}_\infty(F)$ that preserve the additivity of rank
Bull. Korean Math. Soc. 2017 Vol. 54, No. 1, 277-287
https://doi.org/10.4134/BKMS.b160097
Published online January 31, 2017
Roksana S{\l}owik
Kaszubska 23
Abstract : We consider $\mc T_\infty(F)$ -- the space of upper triangular infinite matrices over a field $F$. We investigate injective linear maps on this space which preserve the additivity of rank, i.e., the maps $\phi$ such that \linebreak $\rank(x+y)=\rank(x)+\rank(y)$ implies $\rank(\phi(x+y))=\rank(\phi(x))+\rank(\phi(y))$ for all $x$, $y\in\mc T_\infty(F)$.
Keywords : rank additivity, linear preserver problem, infinite triangular matrices
MSC numbers : 15A03, 15A04, 15A86
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd