Fekete-Szeg\"o problem for certain subclasses of univalent functions
Bull. Korean Math. Soc. 2015 Vol. 52, No. 6, 1937-1943
https://doi.org/10.4134/BKMS.2015.52.6.1937
Published online November 30, 2015
Allu Vasudevarao
Indian Institute of Technology Khargpur
Abstract : For $1\leq\alpha<2$, let $\mathcal{F}(\alpha)$ denote the class of locally univalent normalized analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_n z^n$ in the unit disk $\mathbb{D}=\{z\in\mathbb{C}:\, |z|<1\}$ satisfying the condition $${\rm Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\frac{\alpha}{2}-1. $$ In the present paper, we shall obtain the sharp upper bound for Fekete-Szeg\"o functional $|a_3-\lambda a_2^2|$ for the complex parameter $\lambda$.
Keywords : univalent functions, starlike, convex, close-to-convex and Fekete-Szeg\"o problem
MSC numbers : Primary 30C45
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang.co., Ltd