A note on ternary cyclotomic polynomials
Bull. Korean Math. Soc. 2014 Vol. 51, No. 4, 949-955
https://doi.org/10.4134/BKMS.2014.51.4.949
Published online July 1, 2014
Bin Zhang
Nanjing Normal University
Abstract : Let $\Phi_n(x)=\sum_{k=0}^{\phi(n)}a(n,k)x^k$ denote the $n$-th cyclotomic polynomial. In this note, let $p < q < r$ be odd primes, where $q \not\equiv 1\pmod p$ and $r\equiv -2\pmod {pq}$, we construct an explicit $k$ such that $a(pqr,k)=-2$.
Keywords : cyclotomic polynomial, coefficients of cyclotomic polynomial, ternary cyclotomic polynomial
MSC numbers : 11B83, 11C08, 11N56
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd