Bulletin of the
Korean Mathematical Society
BKMS

ISSN(Print) 1015-8634 ISSN(Online) 2234-3016

Article

HOME ALL ARTICLES View

Bull. Korean Math. Soc. 2013; 50(3): 839-865

Printed May 31, 2013

https://doi.org/10.4134/BKMS.2013.50.3.839

Copyright © The Korean Mathematical Society.

Positive radial solutions for a class of elliptic systems concentrating on spheres with potential decay

Paulo Cesar Carri\~{a}o, Narciso Horta Lisboa, and Olimpio Hiroshi Miyagaki

Universidade Federal de Minas Gerais, Universidade Estadual de Montes Claros, Universidade Federal de Juiz de Fora

Abstract

We deal with the existence of positive radial solutions concentrating on spheres for the following class of elliptic system \begin{equation} \left\{ \begin{array}{c} -\varepsilon ^{2}\Delta u+V_{1}(x)u=K(x)Q_{u}(u,v)\text{ in } \mathbb{R} ^{N}\text{,} \\ -\varepsilon ^{2}\Delta v+V_{2}(x)v=K(x)Q_{v}(u,v)\text{ in } \mathbb{R} ^{N}\text{,} \\ u,v\in W^{1,2}( \mathbb{R} ^{N})\text{, }u,v>0\text{ in } \mathbb{R} ^{N}\text{,} \end{array} \right. \tag{$S$} \end{equation} where $\varepsilon $ is a small positive parameter; $V_{1}$, $V_{2}\in C^{0}( \mathbb{R} ^{N},\left[ 0,\infty \right) )$ and $K\in C^{0}( \mathbb{R} ^{N},\left( 0,\infty \right) )$ are radially symmetric potentials; $Q$ is a $ (p+1)$-homogeneous function and $p$ is subcritical, that is, $1

Keywords: Schr\"odinger operator, radial solution, variational method, singular perturbation

MSC numbers: 35J50, 35B06, 35A15, 35B25