Fuzzy stability of a cubic-quartic functional equation: a fixed point approach
Bull. Korean Math. Soc. 2011 Vol. 48, No. 3, 491-503
Published online May 1, 2011
Sun-Young Jang, Choonkil Park, and Dong Yun Shin
University of Ulsan, Hanyang University, University of Seoul
Abstract : Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following cubic-quartic functional equation \begin{align} f(2x+y) + f(2x-y) = &\ 3f(x+y) + f(-x-y) + 3 f(x-y) + f(y-x) \\ &\ + 18f(x) + 6f(-x) - 3f(y) - 3f(-y) \notag \end{align} in fuzzy Banach spaces.
Keywords : fuzzy Banach space, fixed point, generalized Hyers-Ulam stability, quartic mapping, cubic mapping
MSC numbers : Primary 46S40, 39B72; Secondary 39B52, 46S50, 26E50, 47H10
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd